Untersuchungen zur Verminderung der Längenänderung von Holzspanplatten durch gezielte Nutzung von materialimmanenten Eigenschaften und Verwendung von feuchtebeständigen Zusatzstoffen

Schlussbericht

gefördert durch das Bundesministerium für Bildung und Forschung (BMBF)

Förderkennzeichen 0339851 /8

Forschungsstelle Institut für Holzbiologie und Holztechnologie, Lehrbereich Holzchemie und Holztechnologie Georg-August-Universität Göttingen

Laufzeit 01.07.1999 bis 31.08.2003
Vorwort

Die Arbeiten wurden mit Mitteln des Bundesministeriums für Bildung und Forschung über das Forschungszentrum Jülich GmbH, Projektträger BEO (Frau V. Schütze, Herr Dr. Fitting) gefördert. Für die gute Zusammenarbeit sind die Berichterstatter zu Dank verpflichtet.

An der Bearbeitung des Projektes waren beteiligt:

Georg-August-Universität Göttingen
Institut für Holzbiologie und Holztechnologie
Lehrbereich Holzchemie und Holztechnologie
 Prof. Dr.-Ing. E. Roffael, Dipl.-Forstw. C. Behn
Glunz AG, Werk Göttingen
Elka-Holzwerke Lud. Kuntz GmbH, Morbach
Gliederung

1 Einleitung ... 1
 1.1 Einflussfaktoren auf die Gleichgewichtsfeuchte des Holzes... 2
 1.2 Formstabilität von Holz und Holzwerkstoffen... 5
 1.3 Einflussfaktoren auf die lineare Ausdehnung von Holzspanplatten ... 7
 1.4 Zum möglichen Einfluss von Recycling auf die lineare Ausdehnung 8
 1.5 Veränderung der Holzimmanenten Eigenschaften durch Thermohydrolyse............................... 9

2 Zielsetzung .. 12

3 Material und Methoden.. 13
 3.1 Untersuchungsmaterialien.. 14
 3.1.1 Herstellung der Recyclingspäne ... 14
 3.1.1.1 Thermische Vorbehandlung .. 15
 3.1.1.2 Mechanische Zerkleinerung .. 15
 3.1.1.3 Thermohydrolytischer Aufschluss .. 16
 3.1.1.4 Herstellung der Recyclingfasern .. 17
 3.1.2 Vergleichsmaterial, „frische“ Späne und Fasern ... 17
 3.1.3 Herstellung von Spanplatten im Labormaßstab ... 18
 3.1.4 Herstellung von Span-Faserplatten im Labormaßstab ... 20
 3.2 Untersuchungsmethoden.. 21
 3.2.1 Siebanalysen des Spanmaterials .. 21
 3.2.2 Bestimmung des Feuchtegehalts von Holzspänen ... 22
 3.2.3 Bestimmung der Formaldehydabgabe aus Spänen nach der Flaschenmethode 22
 3.2.3.1 Photometrische Bestimmung der Formaldehydabgabe .. 23
 3.2.4 Kaltwasserextrakte .. 23
 3.2.4.1 Bestimmung des pH-Wertes .. 24
 3.2.4.2 Bestimmung der alkalischen Pufferkapazität .. 24
 3.2.5 Bestimmung des Stickstoffgehalts .. 24
 3.2.6 Bestimmung des Wasserrückhaltevermögens (WRV-Wert) .. 25
 3.2.7 Klimatisierung bei unterschiedlicher relativer Luftfeuchte .. 25
 3.2.8 Eigenschaften der Versuchsspanplatten .. 27
4 Ergebnisse und Diskussion ... 28
 4.1 Charakterisierung der verwendeten Holzspäne ... 28
 4.1.1 Siebanalysen ... 28
 4.1.1.1 Siebanalysen der Recyclingspäne aus mechanischer Zerkleinerung 28
 4.1.1.2 Siebanalysen der Recyclingspäne aus thermohydrolytischem Aufschluss 30
 4.1.1.3 Siebanalysen der industriell hergestellten „frischen“ Holzspäne 32
 4.1.2 Chemische und physikalische Charakterisierung des verwendeten Span- und Fasermaterials ... 34
 4.1.2.1 pH-Wert und Pufferkapazität des Spanmaterials ... 34
 4.1.2.2 Stickstoffgehalt des Spanmaterials ... 36
 4.1.2.3 Formaldehydabgabe des Spanmaterials ... 38
 4.1.2.4 Wasserrückhaltevermögen des Spanmaterials ... 39
 4.1.2.5 Charakterisierung der verwendeten Faserstoffe ... 41
 4.2 Eigenschaften der aus UF-Recyclingspänen hergestellten Laborpanplatten 42
 4.2.1 Rohdichte .. 42
 4.2.2 Querzugfestigkeit ... 43
 4.2.3 Biegefestigkeit ... 44
 4.2.4 Dickenquellung ... 45
 4.2.5 Wasseraufnahme ... 47
 4.2.6 Längenänderung durch Änderung der relativen Luftfeuchte 48
 4.2.7 Dickenänderung durch Änderung der relativen Luftfeuchte 50
 4.2.8 Gleichgewichtsfeuchte .. 51
 4.2.9 Formaldehydabgabe ... 52
 4.3 Eigenschaften der aus PMDI-Recyclingspänen mit PMDI als Bindemittel hergestellten Laborpanplatten .. 54
 4.3.1 Rohdichte und Plattendicke .. 54
 4.3.2 Querzug- und Biegefestigkeit ... 55
 4.3.3 Dickenquellung und Wasseraufnahme nach 24 h Wasserlagerung 57
 4.3.4 Dimensionsstabilität nach Lagerung bei unterschiedlicher relativer Luftfeuchte 58
 4.3.5 Gleichgewichtsfeuchte .. 59
 4.3.6 Formaldehydabgabe ... 61
4.4 Eigenschaften der im Labor hergestellten Span-Faserplatten.................. 62
 4.4.1 Rohdichte.. 63
 4.4.2 Querzugfestigkeit.. 65
 4.4.3 Biegefestigkeit.. 66
 4.4.4 Dickenquellung und Wasseraufnahme... 67
 4.4.5 Dimensionsstabilität nach Lagerung bei unterschiedlicher
 relativer Luftfeuchte... 69
 4.4.6 Gleichgewichtsfeuchte.. 71
 4.4.7 Formaldehydabgabe.. 72
 4.4.8 Untersuchungen zur Sperrwirkung der Faserdeckschichten.............. 73

5 Betriebsversuche .. 75
 5.1 Planung und Durchführung der Betriebsversuche................................. 75
 5.2 Ergebnisse der Betriebsversuche.. 78
 5.2.1 Rohdichte.. 78
 5.2.2 Querzug- und Biegefestigkeit... 79
 5.2.3 Dickenquellung ... 81
 5.2.4 Wasseraufnahme ... 82
 5.2.5 Dimensionsstabilität nach Lagerung bei unterschiedlicher
 relativer Luftfeuchte... 84
 5.2.6 Gleichgewichtsfeuchte.. 86
 5.2.7 Formaldehydabgabe... 87
 5.3 Zusammenfassung und Bewertung der Betriebsversuche.......................... 88

6 Zusammenfassung.. 90

7 Literatur.. 92

8 Anhang.. 98
1 Einleitung

Holz besteht aus den drei Hauptkomponenten Zellulose, Hemizellulose und Lignin. Neben diesen Hauptbestandteilen, die die Zellwand bilden, enthält Holz weitere meist lösliche Stoffe, die als Inhaltsstoffe, Extraktstoffe oder akzessorische Bestandteile bezeichnet werden. Der Gehalt des Holzes an Extraktstoffen ist u. a. Holzartenabhängig und beträgt bei Nadelhölzer der gemäßigten Zone wie Fichte und Kiefer etwa 3% - 5% und bei Laubhölzer wie Buche etwa 2% - 3%.

Abb. 1.1: Adsorptions- und Desorptionskurve sowie Sorptionsisotherme für Sitkafichte.

Holz ist ein hygroskopisches Material, das je nach klimatischen Bedingungen Feuchte abgeben oder aufnehmen kann. Feuchteaufnahme wird als Adsorption bezeichnet, Feuchteabgabe wird Desorption genannt (Abb. 1.1). Die Veränderung der Gleichgewichtsfeuchte in Abhängigkeit von der relativen Luftfeuchte wird bei der Adsorption durch die Adsorptionsisotherme und bei der Desorption durch die Desorptionsisotherme beschrieben, welche eine Hystereseschleife bilden. Die mittlere Kurve zwischen Adsorptions- und Desorptionsisotherme wird als Sorptionsisotherme

![Gleichgewichtsfeuchten der verschiedenen Holzbestandteile](Abb. 1.2: Gleichgewichtsfeuchten der verschiedenen Holzbestandteile (CHRISTENSEN UND KELSEY 1959).)

1.1 Einflussfaktoren auf die Gleichgewichtsfeuchte des Holzes

Abb. 1.3: Sorptionsisotherme von Vollholz und PF- und UF-gebundenen Spanplatten (Schneider 1973).

Bei der Herstellung von Holzwerkstoffen wie Span- und mitteldichten Faserplatten wird das Holz thermisch behandelt. Die bei der Herstellung von Spanplatten verwendeten Späne, in denen die morphologische Struktur des Holzes intakt bleibt, erreichen während der Trocknung kaum Temperaturen oberhalb von 100°C. Wohingegen die bei der MDF-Herstellung verwendeten Holzfasern im Zuge der thermohydrolytischen...

![Graphik](image)

Abb. 1.4: Einfluss der Temperatur auf die Gleichgewichtsfeuchte des Holzes (SKAAR 1972).

Interessanterweise übt auch die Umgebungstemperatur auf die sich im Holz einstellende Gleichgewichtsfeuchte einen Einfluss aus (SKAAR 1972). Die Gleichgewichtsfeuchte nimmt mit sinkender Temperatur zu. Bei hoher relativer Luftfeuchte ist der Einfluss der Umgebungstemperatur auf die Gleichgewichtsfeuchte
besonders ausgeprägt (Abb. 1.4). Da die Hemizellulosen und die Zellulose die hauptaktiven Sorptionszentren im Holz sind, dürfte der Einfluss der Temperatur auf die Sorptionsbeträge der verschiedenen chemischen Holzkomponenten unterschiedlich sein.

1.2 Formstabilität von Holz und Holzwerkstoffen

Bei der bisher weitestverbreiteten Art von Holzspanplatten, den s. g. Flachpressplatten, in denen die Späne und somit die Holzfasern vorwiegend parallel zur Plattenebene liegen, spielt sich bei Feuchtigkeitsaufnahme – im Gegensatz zu den später entwickelten Strangpressplatten – die Veränderung der Abmessungen, entsprechend der Quellung des Holzes, vorwiegend senkrecht zur Plattenebene ab, also in diesem Fall als Dickenzunahme oder Dickenquellung. Die lineare Quellung (Ausdehnung), d. h. die Quellung in Länge und Breite der Platte, die man wohl zusammenfassend als Flächenquellung bezeichnen könnte, ist gegenüber der Dickenquellung sehr gering: auch in nahezu gesättigter Luft liegt die lineare Ausdehnung normalerweise weit unter
1%, bezogen auf die Abessungen der an das Normalklima angeglichenen Proben. Auch diese geringe Quellung kann aber bei entsprechender Größe der Plattenabschnitte von Bedeutung sein. Sie macht sich namentlich dann stärker bemerkbar, wenn ein Luftfeuchtewechsel in dem Plattenquerschnitt asymmetrische Spannungen hervorruft. Das geschieht, wenn die Platte selbst in irgendeiner Hinsicht eine Querschnitts-Asymmetrie aufweist, oder wenn die relative Luftfeuchte oder die Temperatur an beiden Seiten der Platte verschieden sind (Trennwand). In solchen Fällen kommt in den einzelnen Schichten, insbesondere in den beiden Außenschichten des Plattenabschnittes eine unterschiedliche Flächenquellung mit unterschiedlichen Spannungen zustande, die nicht einfach nur zur Vergrößerung, sondern grundsätzlich zu einer mehr oder weniger starken Verformung des Abschnitts führen muss. Je nach dem Grad der Verformung (Formänderung), die eine Platte unter ungünstigen Verhältnissen erfährt, wird dann von einer guten oder schlechten Formstabilität (Stehvermögen) gesprochen. Die Formstabilität ist also eine besondere Art der Dimensionsstabilität und kann analog zu jener als ein Maß dafür bezeichnet werden, mit welchen Formänderungen eine Platte den praktisch vorkommenden Schwankungen der relativen Luftfeuchte begegnen kann, gleichviel ob diese Schwankungen an einer oder an beiden ihrer Seiten zustande kommen. Mathematisch ausgedrückt, ist also die Formstabilität der reziproke Wert der Formänderung, die unter bestimmten Bedingungen zustande kommt. Sie kann aber auch, ähnlich wie die Dimensionsstabilität, als Widerstandsfähigkeit gegen Formänderungen infolge von Klimaschwankungen definiert werden.

Während die Sorptionsisotherme von mit säurehärtenden Harnstoff-Formaldehydharzen (UF-Harzen) gebundenen Spanplatten flacher als die von Vollholz verläuft, zeigt die Sorptionsisotherme von mit alkalisch härtenden Phenolformaldehydharzen gebundenen (PF-Harzen) Spanplatten im Bereich der rel. Luftfeuchte oberhalb von 70% einen steilen Anstieg. Auch die thermische Behandlung von Holzspanplatten beeinflusst ihre

Die Sorptionsisotherme liefert jedoch keine Aussagen über den zeitlichen Verlauf der Feuchteabgabe bzw. Feuchteaufnahme (Sorptionsgeschwindigkeit) durch Holzspanplatten. Spanplatten nehmen infolge Schwankungen im Klima zum einen und ihrer Sorptionsträgheit zum anderen kaum die dem herrschenden Klima zugeordnete Feuchte an (KÖSSATZ, DREWES, KRATZ UND MEHLHORN 1982).

1.3 Einflussfaktoren auf die lineare Ausdehnung von Holzspanplatten

SCHWAB UND SCHÖNEWOLF (1980) fanden keinen signifikanten Einfluss der Plattendicke auf die Längenänderung von Holzspanplatten. RANTA (1978) stellte fest, dass die verfahrenstechnischen Parameter auf die lineare Ausdehnung der Holzspanplatten von Einfluss sind. So nahm nach seinen Ergebnissen die lineare Ausdehnung mit steigender Presstemperatur während der Plattenherstellung deutlich ab, während der Einfluss des Hydrophobierungsmittels vergleichsweise gering ist. RANTA (1978) stellte außerdem fest, dass nach mehreren Klimatisierungszyklen die Dicken- und Längenänderung messbar zunehmen. Dies ist womöglich auf die Auflockerung der Plattenstruktur zurückzuführen. SUCHSLAND (1972) bestimmte die lineare Ausdehnung von verschiedenen Holzspanplatten und stellte hierbei fest, dass je nach Plattentyp die lineare Ausdehnung im Bereich relativer Luftfeuchte von 40% bis 90% zwischen ca. 0,1% und 0,7% varierte. Als wichtigste hierauf einflussnehmende Faktoren sind nach SUCHSLAND (1972) die Rohdichte und die Spangeometrie anzusehen.

1.4 Zum möglichen Einfluss von Recycling auf die lineare Ausdehnung

Die bislang im Schrifttum aufgeführten Angaben über die Längenänderung von Holzspanplatten beziehen sich, soweit bekannt, ausschließlich auf Holzspanplatten, die direkt aus frischem Holz hergestellt werden, Ergebnisse von systematischen Untersuchungen über die Längenänderung von Holzspanplatten, die aus Spänen von Gebrauchstspanplatten stammen, sind in der Literatur u. E. nicht anzutreffen. Das Verhalten von aus Recyclingspänen hergestellten Holzspanplatten dürfte aus folgenden Gründen von dem der Platten, deren Späne direkt aus dem Rohholz stammen, abweichen:

Gebrauchtholzspanplatten, die UF-Harz als Bindemittel enthalten, sind in ihrem Sorptionsvermögen eingeschränkt (SCHNEIDER 1973) und nehmen im Vergleich zu Vollholz insbesondere im oberen Bereich der relativen Luftfeuchte geringe Mengen an Feuchte auf. Wenn auch zwischen der Ausgleichsfeuchte zum einen und der linearen Ausdehnung zum anderen keine lineare Beziehung besteht (NOACK UND SCHWAB 1977), so bieten Recyclingspäne aus UF-Spanplatten demnach gute Voraussetzungen für die Herstellung von Holzspanplatten mit eingeschränktem Längenänderungsvermögen. Hinzu kommt, dass die Späne aus Gebrauchspanplatten bereits während des Trocknens und des Pressens thermisch behandelt wurden, wodurch sie mindestens
eine gewisse thermische Vergütung erfahren, die ihr Sorptionsvermögen verringert und sich auf die lineare Ausdehnung positiv im Sinne einer Erniedrigung auswirken könnte.

1.5 Veränderung der Holzimmanenten Eigenschaften durch Thermohydrolyse

Bei der industriellen Herstellung von Spanplatten wird das Holz zu Spänen zerkleinert, in den Spänen ist die morphologische Struktur des Holzes vollkommen intakt. Dies bedeutet, das die inhärenten Quellungs- und Schwindungseigenschaften des Holzes in den Spanplatten weitgehend erhalten bleiben (PAULITSCH 1975) und sich auf diese, wenn auch in eingeschränktem Umfang, übertragen. Darüber hinaus bringt die
Streuung der Holzspäne im industriellen Maßstab eine gewisse Orientierung der Späne in der Herstellungsrichtung mit sich. Dies trifft im besonderen Maße auf die Späne der Mittelschicht zu. Es war daher von Interesse festzustellen, ob durch Auflösung der morphologischen Struktur des Holzes dessen Schwindungs- und Quellungseigenschaften einschließlich der linearen Ausdehnung der daraus hergestellten Produkte verändert werden können.

Einleitung

Einwirkung von Formaldehyd sind womöglich darauf zurückzuführen, dass nach der Thermohydrolyse das Lignin in weitaus zugänglicherer Form in den Fasern vorliegt als in den Spänen, wodurch die Reaktivität des Lignins gegenüber Formaldehyd erhöht wird.

Abb. 1.5: Adsorptionsgleichgewichtsfeuchte von MDF und Spanplatten (NIEMZ UND POBLETE 1995).

<table>
<thead>
<tr>
<th>Werkstoff</th>
<th>Plattendicke mm</th>
<th>Rohdichte kg/m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDF (STD)</td>
<td>18</td>
<td>697</td>
</tr>
<tr>
<td>MDF (L)</td>
<td>18</td>
<td>592</td>
</tr>
<tr>
<td>MDF (SL)</td>
<td>18</td>
<td>495</td>
</tr>
<tr>
<td>MDF (SL)</td>
<td>15</td>
<td>549</td>
</tr>
<tr>
<td>Spanplatte</td>
<td>16</td>
<td>598</td>
</tr>
<tr>
<td>Spanplatte</td>
<td>19</td>
<td>627</td>
</tr>
</tbody>
</table>

STD: Standard MDF
L: leicht (low density, ca. 600 kg/m³)
SL: superleicht (very low density, ca. 500 kg/m³)
2 Zielsetzung

Wie bereits in der Einleitung ausführlich dargestellt, unterliegen Holzwerkstoffe bei Feuchtigkeitsänderung einer Maßänderung quer zur Plattenebene und in der Plattenebene. Holzspanplatten, die organische Bindemittel enthalten, weisen im Allgemeinen ein um ein Mehrfaches höheres Längenänderungsvermögen auf als mineralisch gebundene Holzwerkstoffe. Im Bereich zwischen darrtrockenem und fasersattem Zustand liegt die lineare Ausdehnung von organisch gebundenen Holzspanplatten je nach verwendeten Rohstoffen (Holzart, Bindemittel) sowie Herstellungsverfahren und Herstellungsbedingungen im Durchschnitt zwischen 0,5% und 1% (DOSOUDI 1958, 1960). Demgegenüber liegt die lineare Ausdehnung von Gips gebundenen Faserplatten mit Werten zwischen 0,05% und 0,1% wesentlich darunter (KOSSATZ 1979, LEMPFER 1987).

Ziel des Forschungsvorhabens ist es, die lineare Ausdehnung von organisch gebundenen Holzwerkstoffen, insbesondere Holzspanplatten bis in den Bereich der mineralisch gebundenen Holzwerkstoffe herabzusetzen, um ihren Anwendungsbereich, insbesondere im Bauwesen, zu erweitern (z.B. Erstellung von fugenlosen Wänden in Fertig- und Innenausbau). Im Rahmen dieser Zielsetzung sollte ebenfalls Untersucht werden, inwieweit Späne, die durch Aufschluss von Gebrauchstspanplatten gewonnen wurden (Recyclingspäne), zu Spanplatten führen, die eine besonders niedrige lineare Ausdehnung aufweisen.
3 Material und Methoden

Die im Rahmen dieses Forschungsvorhabens durchgeführten Untersuchungen lassen sich in mehrere Abschnitte einteilen.

Um die Dimensionsstabilität bei sich ändernder relativer Luftfeuchte zu verbessern wurden in einem weiteren Abschnitt Versuche unternommen, den mit unterschiedlichen Bindemitteln hergestellten Laborspanplatten Holzfasern beizugeben. Wie eingangs dargelegt, weisen Holzfaserplatten eine geringere Gleichgewichtsfeuchte und eine höhere Dimensionsstabilität auf als Holzspanplatten. Diese Untersuchungen sollten zeigen, ob sich durch die Einbringung geringer Mengen an Holzfasern in die Laborspanplatten deren Dimensionsstabilität verbessern lässt. Auch diese Span-
Faserplatten wurden, wie die zuvor hergestellten Spanplatten aus Recyclingspänen, auf ihre Eigenschaften hin untersucht.

3.1 Untersuchungsmaterialien

3.1.1 Herstellung der Recyclingspäne

Für die Herstellung die in diesem Forschungsvorhaben verwendeten Recyclingspäne wurden industriell gefertigte Holzspanplatten als Ausgangsmaterial verwendet, die von der GLUNZ AG, Werk Göttingen bereitgestellt wurden. Es handelt sich hierbei um Holzspanplatten im Dickenbereich von 10mm bis 38mm, die mit Harnstoff-Formaldehyd-Harz (UF-Harz), Melamin-Harnstoff-Formaldehyd-Harz (MUF-Harz) und einem Bindemittel auf Basis von Diphenylmethandiisocyanat (PMDI) hergestellt wurden. Tab. 3.1 gibt die Nenndicken der als Ausgangsmaterial für die Herstellung der Recyclingspäne verwendeten Spanplatten wieder.

<table>
<thead>
<tr>
<th>Plattendicke</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>UF-gebundene Spanplatte</td>
<td>16 mm</td>
</tr>
<tr>
<td>MUF-gebundene Spanplatte</td>
<td>21 mm</td>
</tr>
<tr>
<td>PMDI-gebundene Spanplatte</td>
<td>16 mm</td>
</tr>
</tbody>
</table>

Tab. 3.1: Plattendicken des verwendeten Ausgangsmaterials.

Die weitere Vorgehensweise der Zerkleinerung des Ausgangsmaterials zu Recyclingspänen ist schematisch in Abb. 3.1 dargestellt.
3.1.1.1 Thermische Vorbehandlung

3.1.1.2 Mechanische Zerkleinerung

Die mechanische Zerkleinerung des Ausgangsmaterials erfolgte bei der Fa. Valmet (mittlerweile Metso Panelboard GmbH) in Hannover-Anderten. Die Spanplatten wurden zuerst mit einem Hacker (Pallmann PHT 4-5) und danach mittels einer Hammermühle (Bison Typ 85/100, Lochung 6mm x 20mm) zu Spänen zerkleinert. Im Anschluss daran wurde das Spanmaterial mit einer Taumelsiebmaschine (Allgaier TSM 1200) fraktioniert. Es wurden hierfür Siebe der Maschenweite 4mm, 1mm und 0,2mm verwendet. Das Spanmaterial der Fraktion ≤4mm, >1mm dient in den weiteren
Untersuchungen als Mittelschichtspan, die Fraktion ≤1mm, >0,2mm wird als Deckschichtspan verwendet.

3.1.1.3 Thermohydrolytischer Aufschluss

Um die Bedingungen für den thermohydrolytischen Aufschluss festzulegen, wurden zunächst Versuche mit 1,5kg aufzuschließender Spanplatte durchgeführt. Im Zuge dieser Voruntersuchungen wurden zwei Aufschlusssvarianten ermittelt, die sich in der Aufschlusstemperatur unterscheiden. Bei sonst gleichen Bedingungen wurde das Spanplattenmaterial bei 130°C und 190°C behandelt. Die Aufschlussbedingungen sind in Tab. 3.2 aufgeführt.

<table>
<thead>
<tr>
<th>Aufschlußtemperatur</th>
<th>130°C bzw. 190°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aufschlußdauer</td>
<td>1h</td>
</tr>
<tr>
<td>Flottenverhältnis</td>
<td>Späne 1 : 4 Wasser</td>
</tr>
<tr>
<td>NaOH-Zugabe</td>
<td>1% bezogen auf atro Späne (teilweise entfallen)</td>
</tr>
</tbody>
</table>

Tab. 3.2: Bedingungen des thermohydrolytischen Aufschlusses von Holzspanplatten zur Herstellung von Recyclingspänen.

Nach dem Aufschluss wurde das gewonnene Spanmaterial mit einer Wäscheschleuder (Miele WZ 268) entwässert und danach in einem Trockenschrank (Memmert Mod. 800)
bei 70°C getrocknet. Die Fraktionierung zu Deck- (≤1mm, >0,2mm) und Mittelschichtspänen (≤4mm, >1mm) erfolgte mittels eines Siebanalysegeräts (Retsch KS 1000) mit Sieben der Maschenweite 4mm, 1mm und 0,2mm.

3.1.1.4 Herstellung der Recyclingfasern

<table>
<thead>
<tr>
<th>Aufschlußtemperatur</th>
<th>130°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aufschlußdauer</td>
<td>1h</td>
</tr>
<tr>
<td>Flottenverhältnis</td>
<td>Späne 1 : 6 Wasser</td>
</tr>
<tr>
<td>NaOH-Zugabe</td>
<td>1% bezogen auf atro Späne</td>
</tr>
</tbody>
</table>

Tab. 3.3: Bedingungen des thermohydrolytischen Aufschlusses von mitteldichten Faserplatten (MDF) zur Herstellung von Recyclingfasern.

Nach dem Aufschluss wurden die Recyclingfasern mittels einer Wäscheschleuder (Miele WZ 268) bis zu einem Feuchtegehalt von ca. 130% entwässert und mit einer Stiftmühle (Pallmann PXL 18) aufgelockert, um noch vorhandene Faserklumpen aufzulösen. Die anschließende Trocknung der gewonnenen Recyclingfasern erfolgte im Trockenschrank (Memmert Mod. 800) bei 70°C.

3.1.2 Vergleichsmaterial, „frische“ Späne und Fasern

Für die Fertigung von Laborspanplatten aus „frischen“, nicht recycelten Spänen, die als Referenz für Recycling-Spanplatten dienten, wurden industriell vorwiegend aus Waldholz hergestellte Holzspäne verwendet. Auch diese Späne wurden, wie das
verwendete Recyclingspanmaterial, mittels des Siebanalysegeräts (Retsch KS 1000) zu Deck- (≤1mm, >0,2mm) und Mittelschichtspänen (≤4mm, >1mm) fraktioniert.

Als Referenzmaterial für die hergestellten Recyclingfasern wurde ein industriell nach dem TMP-Verfahren erzeugter Kiefern-Faserstoff verwendet.

3.1.3 Herstellung von Spanplatten im Labormaßstab

Im Rahmen der Untersuchungen wurden dreischichtige Laborspanplatten hergestellt. Hierbei wurden die zuvor auf die beschriebene Weise hergestellten Mittel- und Deckschichtspäne (vgl. Kap. 3.1.1), sowie die industriell hergestellten „Frischspäne“ verwendet. Als Bindemittel wurden ein Harnstoff-Formaldehyd-Harz (UF-Harz) der BASF, ein Melamin-Harnstoff-Formaldehyd-Harz (MUF-Harz) ebenfalls von der BASF und ein Bindemittel auf Basis von Diphenylmethandiisocyanat (PMDI), hergestellt von der Bayer AG, verwendet. Folgende in Tab. 3.4 aufgeführten Herstellungsvarianten wurden im Rahmen der Untersuchungen verwirklicht:

<table>
<thead>
<tr>
<th></th>
<th>UF-Harz</th>
<th>MUF-Harz</th>
<th>PMDI</th>
</tr>
</thead>
<tbody>
<tr>
<td>„frische“ Späne</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Recyclingspäne</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>aus mech. zerkleinerten UF-Spanplatten ohne Wärmebehandlung</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Recyclingspäne</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>aus mech. zerkleinerten UF-Spanplatten mit Wärmebehandlung 70°C/ 48h</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Recyclingspäne</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>aus mech. zerkleinerten PMDI-Spanplatten ohne Wärmebehandlung</td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Tab. 3.4: Herstellungsvarianten der im Labor gefertigten Spanplatten.
Die Beleimung der Holzspäne mit dem jeweiligen Bindemittel und die Einbringung des Hydrophobierungsmittels erfolgten in einer rotierenden Beleimungstrommel (Eigenbau) mit einem Volumen von ca. 1,2m³, in der sich zwei Beleimautomaten (Optima ATM IIO) befinden, die das Bindemittel bzw. Hydrophobierungsmittel auf die Späne sprühen. Das so beleimte Spanmaterial wurde, wie laborüblich, mittels Handstreuung in einem Streukasten von 45cm x 45cm Kantenlänge zu einem dreischichtigem Spankuchen mit 60% der Spanmasse in der Mittelschicht und zwei mal 20% der Masse in den Deckschichten geformt, der mit einer pneumatischen Vorpresse (Eigenbau) bei einem Druck von ca. 3bar vorverdichtet wurde. Der anschließende Heißpressvorgang erfolgte in einer Laborpresse (Joos HP-S 200). Hierbei wurden zur Begrenzung des Pressenspaltes Distanzleisten von 20mm Dicke verwendet, der Pressdruck betrug dabei ca. 70bar. Die übrigen Herstellungsbedingungen der verschiedenen Laborspanplatten werden in Tab. 3.5 wiedergegeben:

<table>
<thead>
<tr>
<th></th>
<th>UF</th>
<th>MUF</th>
<th>PMDI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kaurit 350</td>
<td>9%</td>
<td>Kauramin 350</td>
<td>14%</td>
</tr>
<tr>
<td>Kaurit 350</td>
<td>7%</td>
<td>Kauramin 350</td>
<td>12%</td>
</tr>
<tr>
<td>Desmodur 1520</td>
<td>-</td>
<td>-</td>
<td>A/20 5%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Desmodur 1520</td>
</tr>
<tr>
<td>Ammoniumsulfat</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(40%ige Lösung)</td>
<td>3,4%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paraffin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(60%ige Dispersion)</td>
<td>0,5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solldicke nach Schleifen</td>
<td>19mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sollrohdichte</td>
<td>0,690g/cm³</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preßtemperatur</td>
<td>190°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preßzeit</td>
<td>12sec/mm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tab. 3.5: Herstellungsbedingungen der Laborspanplatten.
Nach der Herstellung der Laborspanplatten wurden diese beidseitig mit einem Schleifmittel der Körnung 100 geschliffen und anschließend auf das Format 41cm x 41cm besäumt. Von jeder der oben beschriebenen Herstellungsvarianten wurden drei Laborspanplatten gefertigt.

3.1.4 Herstellung von Span-Faserplatten im Labormaßstab

Bei der Herstellung dieses Plattentyps wurden die gleichen Herstellungsbedingungen gewählt, wie bei den zuvor produzierten dreischichtigen Spanplatten, jedoch wurden für die Deckschichten nicht „frische“ oder Recyclingspäne verwendet, sondern es wurden hierfür die o. g. industriell erzeugten Kiefernholzfasern bzw. die im Labor aus MDF gewonnenen Recyclingfasern eingesetzt. Als Bindemittel wurden das UF-Harz Kaurit 350 der BASF und der PMDI-Klebstoff Desmodur 1520/A20 (Fa. Bayer) verwendet, die auch bei der Herstellung der Laborspanplatten eingesetzt wurden. *Tab. 3.6* enthält eine Übersicht der verschiedenen hergestellten Span-Faserplatten.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UF-Harz</td>
<td>PMDI</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Tab. 3.6: Herstellungsvarianten der im Labor gefertigten Span-Faserpatten.

der Herstellung von PMDI-gebundenen Span-Faserplatten blieb unverändert. *Tab.* 3.7 gibt die Bindemitteldosierungen für die hergestellten Span-Faserplatten wieder.

<table>
<thead>
<tr>
<th>Bindemittel/-aufwand [% atro Span/Faser]</th>
<th>UF</th>
<th>PMDI</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS</td>
<td>Kaurit 350 12%</td>
<td>Desmodur 1520 A/20 5%</td>
</tr>
<tr>
<td>MS</td>
<td>Kaurit 350 7%</td>
<td>Desmodur 1520 A/20 3,5%</td>
</tr>
<tr>
<td>Härungsbeschleuniger/-aufwand [% Festharz]</td>
<td>DS</td>
<td>MS</td>
</tr>
<tr>
<td>Ammoniumsulfatlösung 40%ig 3,4%</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Tab. 3.7: Bindemitteldosierung bei der Herstellung der Span-Faserplatten.

3.2 Untersuchungsmethoden

3.2.1 Siebanalysen des Spanmaterials

Die im Rahmen der Untersuchungen angefertigten Siebanalysen wurden mit einem Siebanalysegerät (Retsch KS 1000) angefertigt. Die verwendeten Siebe hatten Maschenweiten von 0,2mm, 0,5mm, 1mm, 2mm und 4mm gemäß DIN 4188. Der Siebdurchmesser betrug 400mm. Bei der Siebung fielen die in *Tab.* 3.8 aufgeführten Spanfraktionen an. Der Anteil der einzelnen Spanfraktionen wurde als Gewichtsprozent bezogen auf das Gesamtgewicht (atro) ermittelt.
Material und Methoden

Spanfraktion Verwendung bei der Herstellung von Spanplatten

<table>
<thead>
<tr>
<th>Spanfraktion</th>
<th>Verwendung bei der Herstellung von Spanplatten</th>
</tr>
</thead>
<tbody>
<tr>
<td>>4mm</td>
<td>-</td>
</tr>
<tr>
<td>≤4mm, >2mm</td>
<td>Mittelschicht-Späne (MS-Späne)</td>
</tr>
<tr>
<td>≤2mm, >1mm</td>
<td>Deckschicht-Späne (DS-Späne)</td>
</tr>
<tr>
<td>≤1mm, >0,5mm</td>
<td></td>
</tr>
<tr>
<td>≤0,5mm, >0,2mm</td>
<td></td>
</tr>
<tr>
<td>≤0,2mm</td>
<td>-</td>
</tr>
</tbody>
</table>

Tab. 3.8: Spanfraktionen und deren Verwendung bei der Herstellung von Laborspanplatten.

3.2.2 Bestimmung des Feuchtegehalts von Holzspänen

Der Feuchtegehalt der Späne wurde mit einem Feuchtebestimmer (Sartorius MA 30) bestimmt, der das Untersuchungsmaterial bei 105°C bis zur Gewichtskonstanz trocknete und aus Einwaage und Endgewicht den Feuchtegehalt als Gewichtsprozent bezogen auf das Trockengewicht ermittelte. Es wurden Doppelbestimmungen durchgeführt und die arithmetischen Mittelwerte berechnet.

3.2.3 Bestimmung der Formaldehydabgabe aus Spänen nach der Flaschenmethode

Die Bestimmung der Formaldehydabgabe aus den verschiedenen Spansortimenten erfolgte in Anlehnung an die EN 717-3 nach der sog. Flaschenmethode (Roffael, 1975; Sundin und Roffael, 1991). Hierzu wurde von den Spänen eine ca. 1,5g atro entsprechende Menge in ein handelsübliches Tee-Ei (aus Stahl) eingewogen und anschließend in eine Polyethylenflasche (WKI-Flasche) mit einem Fassungsvermögen von 500ml gehängt. Zuvor wurde die Flasche mit 50ml entionisiertem Wasser gefüllt. Für die Ermittlung des Blindwertes wurde zu jeder Versuchsreihe eine WKI-Flasche, die 50ml entionisiertes Wasser und ein leeres Tee-Ei enthieilt, beigestellt. Die fest
verschlossenen WKI-Flaschen wurden dann für 3h und 24h in einem auf 40°C eingestellten Wärmeschrank belassen.

Nach Ablauf der Prüfdauer wurden die WKI-Flaschen geöffnet und das Untersuchungsmaterial entnommen, danach wurden die Flaschen wieder verschlossen. Um die vollständige Absorption des Formaldehyds im Wasser zu erreichen, kühlten die WKI-Flaschen für eine Stunde ab. Anschließend erfolgte an der Absorptionslösung die photometrische Bestimmung der abgegebenen Formaldehydmenge.

3.2.3.1 Photometrische Bestimmung der Formaldehydabgabe

3.2.4 Kaltwasserextrakte

3.2.4.1 Bestimmung des pH-Wertes

Der pH-Wert der kaltwässrigen Extrakte wurde mittels eines pH-Meters (WTW pH 526) 4min nach Eintauchen der Einstabmesskette bei 20°C ermittelt.

3.2.4.2 Bestimmung der alkalischen Pufferkapazität

Es wurden in Abhängigkeit ihres pH-Wertes 20ml der Absorptionsflüssigkeit mit einer 0,01mol/l NaOH-Lösung bis zum Neutralpunkt titriert. Für die Titration wurde ein Titriersystem der Fa. Schott (Titration Controller 1200, Kolbenbürette T110 und Wechselaufsatz TA20) verwendet. Aus der titrierten Menge an NaOH wurde die alkalische Pufferkapazität in mmol NaOH/ 100g atro Späne errechnet.

3.2.5 Bestimmung des Stickstoffgehalts

Der Stickstoffgehalt wurde in Anlehnung an Merkblatt IV/54/73 des Vereins der Zellstoff- und Papier-Chemiker und Ingenieure (1973) vorgenommen. Es handelt sich um den Kjeldahl-Aufschluß zur Erfassung des organisch gebundenen Stickstoffs. Die Proben werden mit konzentrierter Schwefelsäure und einem Katalysator erhitzt, so dass die organischen Substanzen zersetzt werden. Anschließend wird das Gemisch überdestilliert und diejenigen Verbindungen, die ihren Stickstoff unter diesen Reaktionsbedingungen abgegeben haben, werden durch eine titrimetrische Bestimmung des überdestillierten Ammoniaks erfasst. Abweichend vom o. g. Merkblatt wurden anstelle des Selen-Reaktionsgemisches zwei sog. Kjeldahl-Tabletten (Merck-Nr. 16469) als Katalysator eingesetzt. Die Proben von 1g lutro Spanmaterial wurden mit 20ml 98%-iger Schwefelsäure versetzt. Der Aufschluss und die Destillation wurden mit Geräten der Fa. Gerhardt durchgeführt (Aufschlußsystem: Kjeldatherm KB 8 S, Wasserdampf-Destillationsapparatur: Vapodest 30). Für die Destillation wurden folgende Größen festgelegt: Zugabe von 70ml dest. Wasser und 50ml ca. 30 %-iger Natronlauge sowie eine Dauer von 5min. Anstelle von 0,1N Schwefelsäure wurde bei der Destillation 0,1N Salzsäure vorgelegt. Die Berechnung beruht auf der Beziehung, dass 1ml verbrauchte 0,1N Salzsäure 1,4mg Stickstoff entspricht. Der Stickstoffgehalt wurde als Mittelwert einer Doppelbestimmung wie folgt berechnet:
3.2.6 Bestimmung des Wasserrückhaltevermögens (WRV-Wert)

Die Bestimmung des Wasserrückhaltevermögens (WRV-Wert) der verwendeten Spansortimente erfolgte in Anlehnung an das im Merkblatt IV/33/57 des Vereins der Zellstoff- und Papier-Chemiker und -Ingenieure beschriebene Verfahren. Es wurden dabei jeweils 12 Proben des Fasermaterials von jeweils 0,3g eingewogen und für 16h bei 20°C in 30ml entionisiertem Wasser belassen. Daraufhin wurden die nunmehr gequollenen Holzspäne in einer Zentrifuge (Sigma 3-15) bei 3000-facher Erdbeschleunigung für 5min abgeschleudert. Das so behandelte Fasermaterial wurde gewogen, bei 103°C über Nacht gedarrt und erneut gewogen. Der WRV-Wert ergibt sich aus der Massendifferenz der Proben vor und nach dem Darren in Prozent der darrtrockenen Probenmasse.

3.2.7 Klimatisierung bei unterschiedlicher relativer Luftfeuchte

gezeigt haben. Für die Erzeugung der im Rahmen der Untersuchungen benötigten Klima wurden die in Tab. 3.9 aufgeführten Salzlösungen verwendet (nach SCHNEIDER 1960).

Abb. 3.2: mehrere Spanplatten-Probekörper in den evakuier ten Proberäumen der Vakuumsorptionsapparatur. Am unteren Rand sind die Behälter mit den gesättigten Salzlösungen zur Erzeugung der jeweiligen relativen Luftfeuchte zu erkennen.

gewünschte relative Luftfeuchte	gesättigte Lösung von
35%	MgCl₂ · 6 H₂O
Magnesiumchlorid-Hexahydrat	
65%	NaNO₂
Natriumnitrit	
85%	KCl
Kaliumchlorid	

Tab. 3.9: Salzlösungen zur Erzeugung definierter Luftfeuchten in der Vakuumsorptionsapparatur.
3.2.8 Eigenschaften der Versuchsspanplatten

Nach der Herstellung wurden die Laborspanplatten für 3 Wochen im Normalklima bei 20°C und 65% relativer Luftfeuchte (DIN 50 014) bis zur Gewichtskonstanz gelagert. Anschließend wurden von jeder Plattenvariante zwei Spanplatten zu den verschiedenen Probekörpern eingeschnitten. Die in Tab. 3.10 aufgestellten Eigenschaften der hergestellten Laborspanplatten wurden gemäß den Prüfvorschriften der entsprechenden Normen untersucht.

<table>
<thead>
<tr>
<th>Eigenschaft</th>
<th>Norm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feuchtegehalt</td>
<td>EN 322</td>
</tr>
<tr>
<td>Rohdichte</td>
<td>EN 323</td>
</tr>
<tr>
<td>Zugfestigkeit senkrecht zur Plattenebene</td>
<td>EN 319</td>
</tr>
<tr>
<td>Biegefestigkeit</td>
<td>DIN 52 362</td>
</tr>
<tr>
<td>Dickenquellung nach Wasserlagerung</td>
<td>EN 317</td>
</tr>
<tr>
<td>Wasseraufnahme</td>
<td>DIN 52 351</td>
</tr>
<tr>
<td>Maßänderung in Verbindung mit Änderungen der relativen Luftfeuchte</td>
<td>EN 318</td>
</tr>
<tr>
<td>Formaldehydabgabe nach der Flaschenmethode</td>
<td>EN 717-3</td>
</tr>
</tbody>
</table>

Tab. 3.10: Untersuchte Platteneigenschaften und entsprechende Prüfvorschriften.

4 Ergebnisse und Diskussion

4.1 Charakterisierung der verwendeten Holzspäne

Die Charakterisierung der im Rahmen des Forschungsvorhabens verwendeten Holzspäne umfasst Siebanalysen, Untersuchung der Kaltwasserextrakte hinsichtlich des pH-Wertes und der Pufferkapazität, Ermittlung des Wasserrückhaltevermögens, sowie die Bestimmung des Stickstoffgehalts und der Formaldehydabgabe.

4.1.1 Siebanalysen

Von den im Rahmen des Forschungsvorhabens hergestellten und verwendeten Spansortimenten wurden auf die in Kap. 3.2.1 beschriebene Weise Siebanalysen angefertigt. Die Ergebnisse dieser Untersuchungen, die im Folgenden dargestellt werden, beziehen sich ausschließlich auf Recyclingspäne, die durch mechanische Zerkleinerung bzw. thermohydrolytischen Aufschluss des Ausgangsmaterials ohne vorherige Wärmebehandlung hergestellt wurden.

4.1.1.1 Siebanalysen der Recyclingspäne aus mechanischer Zerkleinerung

Die Ergebnisse der Siebanalysen der durch mechanische Zerkleinerung des Ausgangsmaterials gewonnenen Recyclingspäne gibt Abb. 4.1.1 wieder.

Es ist zu erkennen, dass bei allen Platten 75% bis 85% des Spanmaterials auf die Fraktionen zwischen ≤4mm und >0,2mm entfallen, welche im Forschungsvorhaben als Mittel-, (≤4mm, >1mm) und Deckschichtmaterial, (≤1mm, >0,2mm) Verwendung finden. Die Fraktionen >4mm und <0,2mm machen jeweils nicht mehr als 10% der Spanmasse aus. Die Ausbeute an verwertbarem Material ist bei der mechanischen Zerkleinerung also recht hoch.
Ergebnisse und Diskussion

Abb. 4.1.1: Siebanalysen der durch mechanische Zerkleinerung aus UF-, MUF- und PMDI gebundenen industriell gefertigten Holzspanplatten hergestellten Recyclingspäne.

Abb. 4.1.2: Siebfraktionen der durch mechanische Zerkleinerung aus einer UF gebundenen industriell gefertigten Holzspanplatten hergestellten Recyclingspäne.
Die Abb. 4.1.2 zeigt die verschiedenen Fraktionen der aus mechanischer Zerkleinerung einer UF-gebundenen Spanplatte gewonnenen Recyclingspäne. Vor allem in der Fraktion >4mm aber auch in der ≤4mm, >2mm sind noch nicht zu Spänen zerlegte Partikel von eckig bis runder Form zu erkennen. Diese als ungünstig anzusehende Geometrie der Recyclingspäne aus mechanischer Zerkleinerung wirkt sich zumindest in der Mittelschicht der daraus hergestellten Platten negativ auf deren Eigenschaften aus. (vgl. Kap. 4.2) Das feinere Deckschichtmaterial (≤1mm, >0,2mm) zeigt hingegen eine deutlich länglichere Geometrie, die der von „frischen“ Spänen ähnelt.

4.1.1.2 Siebanalysen der Recyclingspäne aus thermohydrolytischem Aufschluss

Die Abb. 4.1.3 gibt die Ergebnisse der Siebanalysen der verschiedenen thermohydrolytischen Aufschlüsse wieder. Es sind drei verschiedene Aufschlussvarianten dargestellt, die sich in der Art der Vorzerkleinerung der Spanplatten und der Aufschlusstemperatur unterscheiden (vgl. Kap. 3.1.1.3).

Abb. 4.1.3: Siebanalysen der durch thermohydrolytischen Aufschluss aus UF-gebundenen industriell gefertigten Holzspanplatten mit unterschiedlichen Aufschlusstemperaturdifferenzen hergestellten Recyclingspäne.
Zu erkennen ist, dass bei der Verwendung von Spanplattenstücken, die durch Zerteilen des Ausgangsmaterials mit einer Säge hergestellt wurden, ein großer Teil des Materials nach dem Aufschluss bei 130°C in der Fraktion >4mm verbleibt, also nicht richtig aufgeschlossen wurde. Auf die Fraktionen der Mittelschicht (≤4mm, >1mm) entfallen 20% und auf die Deckschichtfraktionen (≤1mm, >0,2mm) 30% des Materials.

Um die Ausbeute beim thermohydrolytischen Aufschluss zu verbessern, wurde zum einen statt der Spanplattenstücken das durch die mechanische Zerkleinerung mittels Hacker und Hammermühle, wie in Kap. 3.1.1.2 beschrieben, gewonnene Material der Fraktion >4mm verwendet und zum anderen dem Aufschlussgut 1% Natriumhydroxid beigegeben. Bei diesen Aufschlussbedingungen verbleibt bei einer Aufschluss-temperatur von 130°C noch ein Drittel des Materials in der Fraktion >4mm. Weitere 30% finden sich in den Deckschichtfraktionen und 31% in den Fraktionen der Deckschicht wieder.

Bei einer Erhöhung der Aufschlusstemperatur auf 190°C verbleiben nur noch 13% in der Fraktion >4mm. Der Massenanteil der Späne der Mittelschicht steigt auf 43% und das Deckschichtmaterial macht 38% der thermohydrolytisch aufgeschlossenen Recyclingspäne aus. Insofern scheint sich eine Erhöhung der Aufschlussstemperatur von 130°C auf 190°C im Wesentlichen auf die grobe Fraktion >4mm auszuwirken, wobei jedoch auch der Feinanteil, wie zu erwarten war, etwas zunimmt. Abb. 4.1.4 zeigt die verschiedenen Fraktionen der drei besprochenen Aufschlussvarianten.

Es ist zu erkennen, dass sich die Spanfraktionen, welche im Rahmen der Untersuchungen für die Deck- und Mittelschichten bei der Herstellung der Laborspanplatten verwendet werden (MS: ≤4mm, >1mm; DS: ≤1mm, >0,2mm), bei den verschiedenen Aufschlussbedingungen hinsichtlich der Spangeometrie kaum unterscheiden. Jedoch führt der Aufschluss bei 190°C zu deutlich dunkleren Recyclingspänen als dies bei 130°C Aufschlussstemperatur der Fall ist.
4.1.1.3 Siebanalysen der industriell hergestellten „frischen“ Holzspäne

Auch von den industriell gefertigten „frischen“ Mittel- und Deckschichtspänen wurden Siebanalysen angefertigt, deren Ergebnisse Abb. 4.1.5 wiedergibt. Hiernach befinden sich bei den Mittelschichtspänen 67% der Masse in den Fraktionen ≤4mm, >1mm, die im Rahmen dieser Untersuchungen für die Mittelschichten der hergestellten Laborspanplatten verwendet wurde. Die Siebanalysen der „frischen“ Deckschichtspäne zeigen ein ähnliches Bild. Hier entfallen auf die im Rahmen dieser Untersuchungen für die Deckschichten der Laborspanplatten verwendeten Fraktionen ≤1mm, >0,2mm 70% der Spanmasse.
Ergebnisse und Diskussion

Abb. 4.1.5: Siebanalysen der industriell gefertigten Deck- und Mittelschichtspäne.

Abb. 4.1.6: Siebfraktionen der industriell gefertigten „frischen“ Mittelschichtspäne.

4.1.2 Chemische und physikalische Charakterisierung des verwendeten Span- und Fasermaterials

Die durch mechanische Zerkleinerung und thermohydrolytischen Aufschluss aus dem Ausgangsmaterial, welches zuvor teilweise der in Kap 3.1.1.1 beschriebenen thermischen Vorbehandlung unterzogen wurde, hergestellten Recyclingspäne, sowie die im Rahmen dieser Untersuchungen verwendeten industriell gefertigten „Frischspäne“ wurden hinsichtlich einiger verleimungsrelevanter Eigenschaften untersucht. Bei den untersuchten thermohydrolytisch erzeugten Recyclingspänen handelt es sich um Material, das durch Aufschluss der Fraktion >4mm von zuvor mechanisch zerkleinerten UF-gebundenen Spanplatten bei 130°C bzw. 190°C unter Zugabe von Natriumhydroxid gewonnen wurde (vgl. Kap. 3.1.1.3). Auch die im Zuge der Untersuchungen hergestellten Recyclingfasern sowie die verwendeten „frischen“ Fasern wurden charakterisiert.

4.1.2.1 pH-Wert und Pufferkapazität des Spanmaterials

Die durch mechanische Zerkleinerung und thermohydrolytischen Aufschluss hergestellten Recyclingspäne sowie die verwendeten industriell gefertigten „Frischspäne“ wurden hinsichtlich des pH-Wertes und der alkalische Pufferkapazität ihrer kaltwässrigen Extrakte untersucht (vgl. Kap. 3.2.4). Die Ergebnisse dieser Untersuchungen sind in den Abb. 4.1.7 und Abb. 4.1.8 zusammengestellt.

Es wird hieraus ersichtlich, dass in der Grundtendenz der pH-Wert durch die thermische Behandlung des Ausgangsmaterials vor der mechanischen Zerkleinerung (vgl. Kap. 3.1.1.1) geringfügig verringert wird. In Übereinstimmung hiermit steigt die alkalische Pufferkapazität der kaltwässrigen Auszüge tendenziell an.

Die Untersuchungen an den kaltwässrigen Extrakten der durch thermohydrolytischen Aufschluss bei 130°C gewonnenen Recyclingspäne zeigen, dass das zugegebene Natriumhydroxid durch die während des Aufschlusses entstehenden Säuren vollständig neutralisiert wird. Der pH-Wert der kaltwässrigen Extrakte dieser Späne liegt mit 6,8 bzw. 6,7 im schwach sauren Bereich. Bei einer Aufschlußtemperatur von 190°C sinkt der pH-Wert der wässrigen Auszüge des Spanmaterials auf annähernd das Niveau des ursprünglichen Materials (UF-Spanplatte, nicht wärmebehandelt) ab. Dies hängt womöglich damit zusammen, dass die bei hohen Temperaturen freiwerdende Menge an Säuren nicht nur in der Lage ist, das Alkali zu neutralisieren, sondern auch ausreicht, den pH-Wert weiter herabzusetzen.

4.1.2.2 Stickstoffgehalt des Spanmaterials

An den durch mechanische Zerkleinerung des Ausgangsmaterials hergestellten Recyclingspänen, den durch thermohydrolytischen Aufschluss bei 130°C gewonnenen Recyclingspänen und den industriell hergestellten „Frischspänen“ wurde der Stickstoffgehalt ermittelt. Die in Abb. 4.1.9 dargestellten Ergebnisse zeigen, dass die Späne aus den MUF-gebundenen Spanplatten den höchsten Stickstoffgehalt aufweisen. Dies war zu erwarten, da die MUF-Spanplatten in der Industrie mit einem

4.1.2.3 Formaldehydabgabe des Spanmaterials

Die verschiedenen durch mechanische Zerkleinerung des Ausgangsmaterials und durch thermohydrolytischen Aufschluss bei 130°C gewonnenen Recyclingspäne und die industriell hergestellten „Frischspäne“ wurden hinsichtlich ihrer Formaldehydabgabe mit Hilfe der Flaschenmethode untersucht (vgl. Kap. 3.2.3). Die Ergebnisse dieser Untersuchungen sind in Abb. 4.1.10 wiedergegeben.

Die dargestellten Ergebnisse lassen erkennen, dass bei UF- und MUF-gebundenen Spanplatten eine thermische Behandlung bei 70°C für 48h zu einer geringfügigen Verringerung der Formaldehydabgabe des daraus gewonnenen Spanmaterials führt. Dieser Effekt tritt bei den Recyclingspänen aus MUF-gebundenen Spanplatten vergleichsweise deutlich zutage, während die Recyclingspäne aus Spanplatten mit PMDI-Bindung erwartungsgemäß einen solchen Einfluss kaum erkennen lassen. Die aus PMDI-gebundenen Spanplatten hergestellten Recyclingspäne weisen eine sehr geringe Formaldehydabgabe auf, die wesentlich geringer als die der übrigen Recyclingspäne ist und auch niedriger als die der industriell hergestellten „frischen“ Holzspäne ausfällt.

Insofern bietet die Behandlung der Späne mit sehr verdünnten Alkalilösungen eine Methode zur Verringerung der Formaldehydabgabe von Recycling-Holzspänen bzw. daraus hergestellten Holzspanplatten.

4.1.2.4 Wasserrückhaltevermögen des Spanmaterials

Wie in Kap. 3.2.6 beschrieben wurde das Wasserrückhaltevermögen (WRV-Wert) der im Rahmen der Untersuchungen durch mechanische Zerkleinerung und thermohydrolytischen Aufschluss hergestellten Recyclingspäne und der verwendeten industriell gefertigten „Frischspäne“ bestimmt. Die dabei erzielten Ergebnisse sind in Abb. 4.1.11 dargestellt.

Wie den dargestellten Untersuchungsergebnissen zu entnehmen ist, weisen die durch mechanische Zerkleinerung des Ausgangsmaterials gewonnenen Recyclingspäne ein gegenüber den „frischen“ Industriespänen vermindertes Wasserrückhaltevermögen auf. Dies ist auf die Anteile des ursprünglichen Bindemittels und Hydrophobierungsmittels zum einen und auf die thermische Behandlung während des Herstellungsprozesses des Ausgangsmaterials (Spänetrocknung, Heißpresse) zum anderen zurückzuführen.
Ergebnisse und Diskussion

<table>
<thead>
<tr>
<th>Wasserrückhaltevermögen [%]</th>
<th>Mittelschichtspäne</th>
<th>Deckschichtspäne</th>
</tr>
</thead>
<tbody>
<tr>
<td>"frische" Mittelschichtspäne</td>
<td>69</td>
<td>73</td>
</tr>
<tr>
<td>130°C/1h thermo-hydrolytisch</td>
<td>58</td>
<td>66</td>
</tr>
<tr>
<td>mechanische Zerkleinerung</td>
<td>44</td>
<td>53</td>
</tr>
<tr>
<td>mechanische Zerkleinerung</td>
<td>57</td>
<td>53</td>
</tr>
<tr>
<td>Wärmebehandlung 70°C/48h</td>
<td>42</td>
<td>47</td>
</tr>
</tbody>
</table>

Auch die im Rahmen dieser Untersuchungen durchgeführte thermische Behandlung des Ausgangsmaterials vor der mechanischen Zerkleinerung zeigt hinsichtlich des WRV-Wertes eine Auswirkung. Vor allem die Recyclingspäne aus mechanisch zerkleinerten MUF- und PMDI-gebundenen Spanplatten, welche zuvor der in Kap. 3.1.1.1 beschriebenen thermischen Vorbehandlung unterworfen wurden, weisen ein gegenüber den unbehandelten Recyclingspänen vermindertes Wasserrückhaltevermögen auf.

4.1.2.5 Charakterisierung der verwendeten Faserstoffe

Auch die im Rahmen dieser Untersuchungen durch thermohydrolytischen Aufschluss von UF-gebundenen MDF hergestellten Recyclingfasern (vgl. Kap. 3.1.1.4), sowie die industriell gefertigten „Frischfasern“ wurden wie die untersuchten Späne charakterisiert. Die Ergebnisse dieser Arbeiten zeigt die Tab. 4.1.1.

<table>
<thead>
<tr>
<th></th>
<th>Industriell hergestellte „Frischfasern“</th>
<th>Recyclingfasern MDF thermohydrolytisch aufgeschlossen 130°C/ 1h, 1% NaOH</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH-Wert</td>
<td>3,9</td>
<td>6,6</td>
</tr>
<tr>
<td>alkalische Pufferkapazität [mMol/ 100g atro Faser]</td>
<td>3,3</td>
<td>0,3</td>
</tr>
<tr>
<td>Stickstoffgehalt [%]</td>
<td>0,1</td>
<td>4,6</td>
</tr>
<tr>
<td>Formaldehydabgabe 24h-Wert [mg/ kg atro Faser]</td>
<td>19,8</td>
<td>200,1</td>
</tr>
<tr>
<td>WRV-Wert [%]</td>
<td>89,2</td>
<td>78,3</td>
</tr>
</tbody>
</table>

Die hergestellten Recyclingfasern sind hinsichtlich des pH-Wertes und der Pufferkapazität den weiter oben beschriebenen thermohydrolytisch aufgeschlossenen Recyclingspänen sehr ähnlich. Der Stickstoffgehalt und die Formaldehydabgabe der Recyclingfasern entsprechen eher denen der Recyclingspäne aus MUF-gebundenen Spanplatten, was auf einen vergleichbaren Bindemittelgehalt hindeutet. Das Wasserrückhaltevermögen der hergestellten Recyclingfasern ist, anders als bei den Recyclingspänen, niedriger als das der „frischen“ Fasern.
4.2 Eigenschaften der aus UF-Recyclingspänen hergestellten Laborpanplatten

Im Folgenden werden die Ergebnisse der Untersuchungen dargestellt, die an den, wie in Kap. 3.1.3 beschrieben, im Labor aus UF-Recyclingspänen und „frischen“ Spänen hergestellten Holzspanplatten vorgenommen wurden. Weiterhin werden die entsprechenden Untersuchungsergebnisse der industriell hergestellten UF-, MUF- und PMDI-gebundenen Holzspanplatten mit aufgeführt, die auch zur Gewinnung der Recyclingspäne verwendet wurden. Es ist zu beachten, dass die industriell gefertigten Spanplatten Plattendicken aufweisen, die sich von denen der im Labor hergestellten Spanplatten unterscheiden (vgl. Kap. 3.1.1 und Anhang Tab 8.3).

4.2.1 Rohdichte

Die in Abb. 4.2.1 dargestellten Rohdichten der im Labor hergestellten Holzspanplatten liegen knapp unter der angestrebten Sollrohdichte von 0,69g/cm³. Die Rohdichte des industriell gefertigten Ausgangsmaterials liegt teilweise deutlich über 0,7g/cm³, was beim Vergleich der Platteneigenschaften von im Labor und industriell gefertigten Spanplatten zu berücksichtigen ist.

![Rohdichten der thermisch behandelten und unbehandelten UF-, MUF- und PMDI-gebundenen Ausgangsmaterialien und der aus mechanisch zerkleinerten UF-Recyclingspänen und „frischen“ Spänen hergestellten UF-, MUF- und PMDI-gebundenen Laborspanplatten.](image-url)

Abb. 4.2.1: Rohdichte des thermisch behandelter und unbehandelter UF-, MUF- und PMDI-gebundenen Ausgangsmaterialien und der aus mechanisch zerkleinerten UF-Recyclingspänen und „frischen“ Spänen hergestellten UF-, MUF- und PMDI-gebundenen Laborspanplatten.
4.2.2 Querzugfestigkeit

Die Ergebnisse der Untersuchungen zur Querzugfestigkeit sind in Abb. 4.2.2 zusammengestellt. Daraus wird ersichtlich, dass die Querzugfestigkeit der mit UF-Harz aus UF-Recyclingspänen hergestellten Holzspanplatten wesentlich geringer ist als die Querzugfestigkeit der Ausgangsplatten und ebenso wesentlich geringer als die Querzugfestigkeit der unter den gleichen Bedingungen aus frischen Spänen hergestellten Holzspanplatten. Dies bedeutet, dass die Verleimungsqualität von Recyclingspänen mit UF-Harz im Vergleich zu der von frischen Holzspanplatten wesentlich schlechter ist.

Abb. 4.2.2: Querzugfestigkeit des thermisch behandelten und unbehandelten UF-, MUF- und PMDI-gebundenen Ausgangsmaterials und der aus mechanisch zerkleinerten UF-Recyclingspänen und „frischen“ Spänen hergestellten UF-, MUF- und PMDI-gebundenen Laborspanplatten.

Auch bei einer Verleimung mit MUF erreichen die aus Recyclingspänen hergestellten Holzspanplatten trotz der Verwendung einer Bindemittelmenge von 12% in der Mittelschicht und 14% in der Deckschicht nicht die Querzugfestigkeiten der mit UF-Harz aus frischen Holzspänen hergestellten Holzspanplatten. Interessant ist in diesem Zusammenhang jedoch die Feststellung, dass bei der Verleimung mit PMDI die Querzugfestigkeit der Recyclingspanplatten höher liegt als die mit dem Bindemittel MUF trotz des wesentlich höheren Bindemittelaufwandes bei der Verwendung von MUF als

Es lässt sich demnach festhalten, dass PMDI sich weitaus besser als Aminoplastharze für die Bindung von Recycling-Spänen aus UF-Harz gebundenen Holzspanplatten eignet.

4.2.3 Biegefestigkeit

Die Ergebnisse der Untersuchungen zur Biegefestigkeit der hergestellten Laborspanplatten sowie des industriell gefertigten Ausgangsmaterials gibt Abb. 4.2.3 wieder.

Abb. 4.2.3: Biegefestigkeit des thermisch behandelten und unbehandelten UF-, MUF- und PMDI-gebundenen Ausgangsmaterials und der aus mechanisch zerkleinerten UF-Recyclingspänen und „frischen“ Spänen hergestellten UF-, MUF- und PMDI-gebundenen Laborspanplatten.

Es ist zu erkennen, dass die Laborspanplatten, vor allem diejenigen aus Recyclingspänen sehr geringe Biegefestigkeiten aufweisen. Da auch die Laborspanplatten aus „frischen“ Spänen nicht die Festigkeit des Ausgangsmaterials aufweisen, ist davon auszugehen, dass die gewählten Herstellungsbedingungen nicht
geeignet sind, Spanplatten mit einer hohen Biegefestigkeit herzustellen. Trotz dieser Einschränkung kann jedoch bei der Betrachtung der aus Recyclingspänen hergestellten Laborspanplatten festgestellt werden, dass die Verwendung von PMDI als Bindemittel für UF-Recyclingspäne, wie schon bei den Untersuchungen zur Querzugfestigkeit festgestellt wurde (Kap. 4.2.2), die besten Ergebnisse hervorbringt.

4.2.4 Dickenquellung

Bestätigung findet die bei den Untersuchungen zur Querzug- und Biegefestigkeit getroffene Feststellung der Vorteilhaftigkeit der PMDI-Verleimung von Recyclingspänen aus UF-gebundenen Spanplatten ebenfalls in der ermittelten Dickenquellung (Abb. 4.2.4 und Abb. 4.2.5). Hier wird auch deutlich, dass die Dickenquellung nach 24h Wasserlagerung von UF-gebundenen Spanplatten hergestellt aus Recyclingspänen wesentlich höher liegt als die der ursprünglichen Spanplatten, während die Dickenquellung der mit PMDI als Bindemittel hergestellten Spanplatten aus Recyclingspänen wesentlich niedriger liegt als die der entsprechenden UF-Spanplatten und wesentlich niedriger als die der Ausgangspanplatten.

Bemerkenswert ist weiterhin, dass die Dickenquellung nach einer Wasserlagerung von 24h der PMDI-Spanplatten aus Recyclingspänen ebenfalls wesentlich niedriger ist als die der mit PMDI als Bindemittel hergestellten Holzspanplatten aus „frischen“ Holzspänen. Auch hier ist die Feststellung berechtigt, dass die Bindung von UF-Recyclingspänen mit PMDI weitaus effizienter ist als ihre Bindung mit UF-Harzen. Weiterhin lassen die Untersuchungsergebnisse erkennen, dass die Wärmebehandlung der Späne bei 70°C für 48h keinen merklichen Einfluss auf die Dickenquellung der Platten hat.
Ergebnisse und Diskussion

Abb. 4.2.4: Dickenquellung nach 2h Wasserlagerung des thermisch behandelten und unbehandelten UF-, MUF- und PMDI-gebundenen Ausgangsmaterials und der aus mechanisch zerkleinerten UF-Recyclingspänen und „frischen“ Spänen hergestellten UF-, MUF- und PMDI-gebundenen Laborspanplatten.

Abb. 4.2.5: Dickenquellung nach 24h Wasserlagerung des thermisch behandelten und unbehandelten UF-, MUF- und PMDI-gebundenen Ausgangsmaterials und der aus mechanisch zerkleinerten UF-Recyclingspänen und „frischen“ Spänen hergestellten UF-, MUF- und PMDI-gebundenen Laborspanplatten.
4.2.5 Wasseraufnahme

In Abb. 4.2.6 und Abb. 4.2.7 ist die Wasseraufnahme der hergestellten Spanplatten nach einer Wasserlagerung von 2h und 24h dargestellt. Hier zeigt sich, dass die Bindung von Holzspänen zu Holzspanplatten mit UF-Harzen die Wasseraufnahme nach 2h Wasserlagerung geringfügig herabsetzt. Die Wasseraufnahme nach 24h Wasserlagerung, die u. a. stark von der Verleimungsqualität der Späne abhängt, wird wesentlich erhöht. Dies ist ein hinreichendes Kriterium dafür, dass die Verleimung von Recyclingspänen aus mechanisch zerkleinerten UF-Spanplatten mit UF-Harzen zu Spanplatten mit höherer Wasseraufnahme führt. Demgegenüber zeigen die mit MUF und PMDI als Bindemittel hergestellten Spanplatten aus Spänen, die aus UF-Spanplatten gewonnen worden sind, eine wesentlich niedrigere Wasseraufnahme als die Ausgangsplatten mit oder ohne thermische Behandlung. Ferner ist festzustellen, dass die mit PMDI und MUF aus Recyclingspänen der UF-Spanplatten hergestellten Spanplatten ein deutlich niedrigeres Wasseraufnahmevermögen als die entsprechenden Platten aus frischen Holzspänen, die mit PMDI oder mit MUF als Bindemittel hergestellt sind, aufweisen.

Abb. 4.2.6: Wasseraufnahme nach 2h Wasserlagerung des thermisch behandelten und unbehandelten UF-, MUF- und PMDI-gebundenen Ausgangsmaterials und der aus mechanisch zerkleinerten UF-Recyclingspänen und „frischen“ Spänen hergestellten UF-, MUF- und PMDI-gebundenen Laborspanplatten.
Ergebnisse und Diskussion

4.2.7 Wasseraufnahme nach 24h Wasserlagerung des thermisch behandelten und unbehandelten UF-, MUF- und PMDI-gebundenen Ausgangsmaterials und der aus mechanisch zerkleinerten UF-Recyclingspänen und „frischen“ Spänen hergestellten UF-, MUF- und PMDI-gebundenen Laborspanplatten.

Abb. 4.2.7: Wasseraufnahme nach 24h Wasserlagerung des thermisch behandelten und unbehandelten UF-, MUF- und PMDI-gebundenen Ausgangsmaterials und der aus mechanisch zerkleinerten UF-Recyclingspänen und „frischen“ Spänen hergestellten UF-, MUF- und PMDI-gebundenen Laborspanplatten.

Auch diese Ergebnisse lassen die Schlussfolgerung berechtigt erscheinen, dass die Verleimung mit PMDI oder MUF weitaus günstiger ist als die Verleimung mit UF-Harzen. Die thermische Behandlung der UF-Spanplatten verringert geringfügig die Wasseraufnahme der Ausgangsplatten und auch die der aus den Spänen der UF-Spanplatten mit den Bindemitteln MUF und PMDI.

4.2.6 Längenänderung durch Änderung der relativen Luftfeuchte

Die Erfassung der Längenänderung der hergestellten Spanplatten erfolgte in Anlehnung an EN 318. In Abb. 4.2.8 ist sowohl die Schrumpfung durch den Klimawechsel von 65% rel. Luftfeuchte auf 35% rel. Luftfeuchte, als auch die Dehnung beim Klimawechsel auf von 65% rel. Luftfeuchte 85% rel. Luftfeuchte wiedergegeben.
Es wird hieraus ersichtlich, welchen Einfluss die Verleimung mit den verschiedenen Bindemitteln (UF, MUF und PMDI) auf die Längenänderung von Spanplatten, hergestellt aus UF-Recyclingspänen, hat. Während die Platten mit UF-Verleimung eine Gesamtlängenänderung (Schrumpfung + Dehnung) von etwa 0,8% aufweisen, liegt die Gesamtlängenänderung bei denen mit MUF- und PMDI-Verleimung um bis zu 50% niedriger. Betrachtet man nur die Längenänderung durch den Klimawechsel von 65% rel. Luftfeuchte auf 85% rel. Luftfeuchte, wird der Unterschied zwischen den mit unterschiedlichen Bindemitteln hergestellten Platten noch deutlicher. Hier liegt die Längenänderung der UF-Spanplatten bei 0,58%, während die der MUF- und PMDI-Platten bei 0,22% bzw. 0,32%. Diese Unterschiede in der Längenänderung sind ebenfalls bei den Platten, deren Spanmaterial aus den für 48h bei 70°C thermisch behandelten Platten hergestellt wurde, deutlich feststellbar. Auch hier bestehen erhebliche Unterschiede zwischen den UF-gebundenen Platten zum einen und den MUF- und PMDI-gebundenen zum anderen.
4.2.7 Dickenänderung durch Änderung der relativen Luftfeuchte

Nachdem sich herausgestellt hat, dass die eingesetzten Bindemittel bei der Herstellung von Spanplatten aus Recyclingspänen UF-gebundener Holzspanplatten einen markanten Einfluss auf die physikalisch-technologischen Eigenschaften der Holzspanplatten nehmen, war es nahe liegend festzustellen, ob auch die Verleimung Einfluss auf die Dickenänderung in feuchter Luft nimmt. Für diesen Zweck wurde die Dickenänderung durch Änderung der relativen Luftfeuchte von 65% auf 35% und 85% gem. EN 318 ermittelt. Die Ergebnisse sind in Abb. 4.2.9 zusammengestellt.

Abbildung 4.2.9: Maßänderung senkrecht zur Plattenebene (Dickenänderung) des thermisch behandelten und unbehandelten UF-, MUF- und PMDI-gebundenen Ausgangsmaterials und der aus mechanisch zerkleinerten UF-Recyclingspänen und „frischen“ Spänen hergestellten UF-, MUF- und PMDI-gebundenen Laborspanplatten.

Aus den Ergebnissen wird deutlich, dass das bei der Verleimung von Recyclingspänen eingesetzte Bindemittel einen deutlichen Einfluss auf die Dickenänderung durch Änderung der relativen Luftfeuchte hat. So lag die Dickenänderung der UF-gebundenen Spanplatten beim Übergang von 65% auf 85% Feuchte bei 5,3%, die mit MUF und PMDI gebundenen Holzspanplatten wiesen eine Dickenänderung von 1,7% (MUF) und 3,0% (PMDI) auf und lagen damit wesentlich niedriger als bei den UF-Platten. Die mit MUF und PMDI als Bindemittel hergestellten Holzspanplatten liegen in ihrer Dickenänderung durch Änderung der relativen Luftfeuchte niedriger als die
Ausgangsplatten, aus denen die Spanplatten stammen. Es scheint die Verwendung der Bindemittel MUF und PMDI als Bindemittel für Recyclingspäne aus UF-gebundenen Spanplatten hinsichtlich der Dimensionsstabilität vorteilhaft zu sein.

4.2.8 Gleichgewichtsfeuchte

In Abb. 4.2.10 ist die Gleichgewichtsfeuchte der untersuchten Holzspanplatten bei einer relativen Luftfeuchte von 65%, sowie deren Absenkung und Erhöhung bei einem Wechsel der Luftfeuchte auf 35% bzw. 85% dargestellt.

Abb. 4.2.10: Gleichgewichtsfeuchte nach Lagerung bei 65% relativer Luftfeuchte und deren Veränderung durch Absenkung auf 35% und Anhebung auf 85% relative Luftfeuchte. Dargestellt sind die Gleichgewichtsfeuchten des thermisch behandelten und unbehandelten UF-, MUF- und PMDI-gebundenen Ausgangsmaterials und der aus mechanisch zerkleinerten UF-Recyclingspänen und „frischen“ Spänen hergestellten UF-, MUF- und PMDI-gebundenen Laborspanplatten.

Die Gleichgewichtsfeuchten der Spanplatten, die aus UF-Recyclingspänen mit den verschiedenen Bindemitteln UF-, MUF- und PMDI hergestellt wurden, sind im allgemeinen niedriger als die der entsprechenden Spanplatten aus frischen Spänen der Industrie. Sie liegen ebenfalls gemeinhin niedriger als die der Ausgangsspanplatten.

4.2.9 Formaldehydabgabe

Im Rahmen dieser Untersuchungen wurde die Formaldehydabgabe nach der Flaschenmethode gemäß EN 717-3 mit einer Prüfdauer von 3h und 24h bestimmt. Die Ergebnisse sind in Abb. 4.2.11 und Abb. 4.2.12 für die aus den UF-Recyclingspänen mit verschiedenen Bindemitteln hergestellten Spanplatten zusammengestellt. Mit aufgeführt sind die Ergebnisse für die Ausgangsplatten sowie für die aus Industriespänen unter Verwendung der verschiedenen Bindemittel hergestellten Spanplatten. Die Ergebnisse lassen die folgenden Schlussfolgerungen zu:

Die mit UF-Harz verleimten Spanplatten aus Recyclingspänen weisen im Allgemeinen eine geringe Formaldehydabgabe als die entsprechenden MUF- und PMDI-Platten auf. Diese Feststellung trifft für die Prüfdauer von 3h und 24h zu.

Generell haben die aus Recyclingspänen hergestellten Platten, wie zu erwarten war, eine höhere Formaldehydabgabe als die aus „frischen“ Spänen unter sonst gleichen Bedingungen hergestellten Platten.
Ergebnisse und Diskussion

Abb. 4.2.11: Formaldehydabgabe (Flaschenmethode, 3h-Werte) des thermisch behandelten und unbehandelten UF-, MUF- und PMDI-gebundenen Ausgangsmaterials und der aus mechanisch zerkleinerten UF-Recyclingspänen und „frischen“ Spänen hergestellten UF-, MUF- und PMDI-gebundenen Laborspanplatten.

Abb. 4.2.12: Formaldehydabgabe (Flaschenmethode, 24h-Werte) des thermisch behandelten und unbehandelten UF-, MUF- und PMDI-gebundenen Ausgangsmaterials und der aus mechanisch zerkleinerten UF-Recyclingspänen und „frischen“ Spänen hergestellten UF-, MUF- und PMDI-gebundenen Laborspanplatten.

4.3 Eigenschaften der aus PMDI-Recyclingspänen mit PMDI als Bindemittel hergestellten Laborpanplatten

Inhalt dieser Untersuchungen war es, Holzspanplatten aus Recyclingspänen herzustellen, welche durch mechanische Zerkleinerung aus PMDI-gebundenen Spanplatten gewonnen wurden. Die Herstellungsbedingungen entsprechen denen der Laborspanplatten, welche aus UF-Recyclingspänen hergestellt wurden (Kap. 3.1.3).

Im Folgenden werden zum Vergleich neben den Untersuchungsergebnissen für die PMDI-gebundenen Spanplatten aus PMDI-Recyclingspänen auch die Ergebnisse für die Platten aus UF-Recyclingspänen und „frischen“ Spänen mit PMDI als Bindemittel dargestellt. Weiterhin sind die Untersuchungsergebnisse für die PMDI-gebundenen industriell gefertigten Spanplatten, die als Ausgangsmaterial für die Herstellung der PMDI-Recyclingspäne dienten, mit aufgeführt.

4.3.1 Rohdichte und Plattendicke

Wie Tab. 4.3.1 zu entnehmen ist, weisen die aus PMDI-Recyclingspänen hergestellten PMDI-gebundenen Laborspanplatten mit 700 kg/m³ eine etwas höhere Rohdichte auf als die unter sonst gleichen Bedingungen aus UF-Recyclingspänen und „frischen“ Spänen hergestellten Platten. Gegenüber den Laborspanplatten weisen die industriell gefertigten Spanplatten eine geringere Dicke und höhere Dichte auf.
Ergebnisse und Diskussion

<table>
<thead>
<tr>
<th>Mittelwert</th>
<th>Standardabweichung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plattendicke [mm]</td>
<td>Rohdichte [g/cm³]</td>
</tr>
<tr>
<td>industriell hergestellte PMDI-gebundene Spanplatten</td>
<td></td>
</tr>
<tr>
<td>16,35</td>
<td>0,01</td>
</tr>
<tr>
<td>„frische“ Späne</td>
<td></td>
</tr>
<tr>
<td>19,96</td>
<td>0,11</td>
</tr>
<tr>
<td>UF-Recyclingspäne</td>
<td></td>
</tr>
<tr>
<td>19,28</td>
<td>0,06</td>
</tr>
<tr>
<td>PMDI-Recyclingspäne</td>
<td></td>
</tr>
<tr>
<td>19,19</td>
<td>0,07</td>
</tr>
</tbody>
</table>

Tab. 4.3.1: Dicke und Rohdichte der aus „frischen“, UF-Recycling- und PMDI-Recyclingspänen mit PMDI als Bindemittel hergestellten Laborspanplatten, sowie der mit PMDI als Bindemittel industriell gefertigten Spanplatten.

4.3.2 Querzug- und Biegefestigkeit

Die Querzugfestigkeit (Abb. 4.3.1) der untersuchten Platten aus PMDI-Recyclingspänen mit PMDI-Bindung ist deutlich geringer als die der ebenfalls mit PMDI gebundenen Platten aus UF-Recyclingspänen. Bei der Biegefestigkeit (Abb. 4.3.2) ist dies hingegen nicht festzustellen, hier zeigen beide Plattentypen eine in etwa gleich hohe Festigkeit, die jedoch deutlich unter der Biegefestigkeit der PMDI-gebundenen Spanplatte aus „frischen“ Spänen liegt. Die Festigkeitswerte der industriell hergestellten Spanplatten mit PMDI-Bindung werden von keiner der hergestellten Laborspanplatten erreicht. Dies ist womöglich auf die relativ hohe Rohdichte oder auf einen eventuell höheren Bindemittelgehalt der industriell gefertigten Spanplatten zurückzuführen.
Ergebnisse und Diskussion

Abb. 4.3.1: Querzugfestigkeit der aus PMDI-Recyclingspänen, UF-Recyclingspänen und „frischen“ Spänen mit PMDI als Bindemittel hergestellten Spanplatten, sowie der mit PMDI als Bindemittel industriell gefertigten Spanplatten.

Abb. 4.3.2: Biegefestigkeit der aus PMDI-Recyclingspänen, UF-Recyclingspänen und „frischen“ Spänen mit PMDI als Bindemittel hergestellten Spanplatten, sowie der mit PMDI als Bindemittel industriell gefertigten Spanplatten.
4.3.3 Dickenquellung und Wasseraufnahme nach 24 h Wasserlagerung

Die Ergebnisse der Bestimmung von Dickenquellung (Abb. 4.3.3) und Wasseraufnahme (Abb. 4.3.4) zeigen, dass die aus UF-Recyclingspänen in Verbindung mit dem Bindemittel PMDI hergestellten Platten gegenüber den Platten aus „Frischspänen“ eine deutlich niedrigere Dickenquellung aufweisen. Dies gilt nicht gegenüber den PMDI-verleimten Spanplatten aus PMDI-Recyclingspänen. Dies ist zusammen mit der gegenüber den Platten aus UF-Recyclingspänen verminderten Querzugfestigkeit ein Hinweis auf eine geringe Qualität der Verleimung bei Platten aus PMDI-Recyclingspänen, die mit PMDI als Bindemittel hergestellt wurden. Die guten Erfahrungen mit der PMDI-Verleimung von UF-Recyclingspänen (vgl. Kap. 4.2) lassen sich demnach nicht ohne weiteres auf die Verleimung von Recyclingspänen, hergestellt aus PMDI-gebundenen Spanplatten, übertragen.

Abb. 4.3.3: Dickenquellung nach 2h und 24h Wasserlagerung der aus PMDI-Recyclingspänen, UF-Recyclingspänen und „frischen“ Spänen mit PMDI als Bindemittel hergestellten Spanplatten, sowie der mit PMDI als Bindemittel industriell gefertigten Spanplatten.
Ergebnisse und Diskussion

industriell hergestelltes Ausgangsmaterial
hergestellt aus "frischen" Spänen
hergestellt aus mech. zerkleinerten UF-Recyclingspänen
hergestellt aus mech. zerkleinerten PMDI-Recyclingspänen

Abb. 4.3.4: Wasseraufnahme nach 2h und 24h Wasserlagerung der aus PMDI-Recyclingspänen, UF-Recyclingspänen und „frischen“ Spänen mit PMDI als Bindemittel hergestellten Spanplatten, sowie der mit PMDI als Bindemittel industriell gefertigten Spanplatten.

4.3.4 Dimensionsstabilität nach Lagerung bei unterschiedlicher relativer Luftfeuchte

Die Untersuchungen zur Dimensionsstabilität nach Lagerung der Spanplatten bei relativen Luftfeuchten von 35%, 65% und 85% zeigen für die Platten aus PMDI-Recyclingspänen gegenüber denen aus UF-Recyclingspänen eine Verbesserte Stabilität in der Plattenebene (Abb. 4.3.5) sowie auch senkrecht dazu (Abb. 4.3.6). Gegenüber den Platten aus „frischen“ Spänen scheint die Dimensionsstabilität in Plattenebene durch die Verwendung der Recyclingspäne im Bereich relativer Luftfeuchten oberhalb von 65% eher verschlechtert zu werden, nicht jedoch unterhalb hiervon. Hierbei ist jedoch zu bedenken, dass die „frischen“ Späne über eine weitaus bessere Spangeometrie verfügen als die mechanisch zerkleinerten Recyclingspäne (vgl. Kap. 4.1.1). Durch die längliche Form der „frischen“ Späne können sich diese bei der durch die wechselnde Luftfeuchte hervorgerufene Quellung bzw. Schwindung gegenseitig sperren, so dass das Ausmaß der Dimensionsänderung in Plattenebene begrenzen. Senkrecht zur Plattenebene kommt dieser Effekt nicht zum tragen, da sich die Späne während des Herstellungsprozesses in Plattenebene ausrichten. Daher sind
die in Abb. 4.3.6 dargestellten Unterschiede in der Dimensionsänderung senkrecht zur Plattenebene auch wesentlich geringer. Hier scheint das Recycling die Dimensionsstabilität der Platte eher zu verbessern als zu verschlechtern.

4.3.5 Gleichgewichtsfeuchte

Die in Abb. 4.3.7 dargestellte Gleichgewichtsfeuchte der untersuchten PMDI-gebundenen Spanplatten zeigt für die Laborspanplatten aus UF- und PMDI-Recyclingspänen eine gegenüber den Platten aus „frischen“ Spänen verminderte Reaktion der Gleichgewichtsfeuchte auf eine Änderung der relativen Luftfeuchte. Weiterhin weisen die im Labor hergestellten Spanplatten eine gegenüber den industriell hergestellten Platten im Allgemeinen verminderte Ausgleichsfeuchte bei Lagerung in den Klimaten mit 65% und 85% relativer Luftfeuchte auf.

Abb. 4.3.5: Maßänderung in Plattenebene (Längenänderung) nach Lagerung bei 65%, 35% und 85% relativer Luftfeuchte der aus PMDI-Recyclingspänen, UF-Recyclingspänen und „frischen“ Spänen mit PMDI als Bindemittel hergestellten Spanplatten, sowie der mit PMDI als Bindemittel industriell gefertigten Spanplatten.
Ergebnisse und Diskussion

Abb. 4.3.6: Maßänderung senkrecht zur Plattenebene (Dickenänderung) nach Lagerung bei 65%, 35% und 85% relativer Luftfeuchte der aus PMDI-Recyclingspänen, UF-Recyclingspänen und „frischen“ Spänen mit PMDI als Bindemittel hergestellten Spanplatten, sowie der mit PMDI als Bindemittel industriell gefertigten Spanplatten.

Abb. 4.3.7: Gleichgewichtsfeuchte nach Lagerung bei 65% relativer Luftfeuchte und deren Veränderung durch Absenkung auf 35% und Anhebung auf 85% relative Luftfeuchte. Dargestellt sind die Gleichgewichtsfeuchten der aus PMDI-Recyclingspänen, UF-Recyclingspänen und „frischen“ Spänen mit PMDI als Bindemittel hergestellten Spanplatten, sowie die Gleichgewichtsfeuchte der mit PMDI als Bindemittel industriell gefertigten Spanplatten.
4.3.6 Formaldehydabgabe

Die nach der Flaschenmethode (EN 717.3) bestimmte Formaldehydabgabe (Abb. 4.3.8) zeigt überraschend niedrige Werte für die Spanplatten aus PMDI-Recyclingspänen. Hier scheint die wiederholte „formaldehydfreie“ Beleimung und die thermische Behandlung während des Herstellungsprozesses das Formaldehyd-Abgabepotential drastisch gesenkt zu haben. Die aus UF-Recyclingspänen hergestellten PMDI-gebundenen Holzspanplatten weisen eine gegenüber den aus PMDI-Recyclingspänen mit PMDI als Bindemittel hergestellten Platten eine vergleichsweise hohe Formaldehydabgabe auf.

Abb. 4.3.8: Nach der Flaschenmethode (3h und 24h Prüfdauer) bestimmte Formaldehydabgabe der aus PMDI-Recyclingspänen, UF-Recyclingspänen und „frischen“ Spänen mit PMDI als Bindemittel hergestellten Spanplatten, sowie der mit PMDI als Bindemittel industriell gefertigten Spanplatten.
4.4 Eigenschaften der im Labor hergestellten Span-Faserplatten

Die folgenden Darstellungen enthalten die Ergebnisse der Untersuchungen, die an den, wie in Kap. 3.1.4 beschrieben, hergestellten Laborplatten mit Deckschichten aus Holzfasern vorgenommen wurden. Es wurden Span-Faserplatten untersucht, die aus „frischen“ Spänen und Fasern mit UF-Harz und PMDI als Bindemittel hergestellt wurden. Weiterhin wurden Span-Faserplatten untersucht, die aus Recyclingspänen und Recyclingfasern unter Verwendung der o. g. Bindemittel hergestellt wurden. Im Folgenden werden zu Vergleichszwecken neben den Span-Faserplatten auch die dreischichtigen Laborspanplatten mit Deckschichten aus Spänen, die unter den gleichen Herstellungsbedingungen produziert wurden, sowie die industriell gefertigten UF- und PMDI-gebundenen Spanplatten mit aufgeführt. Abb. 4.4.1 zeigt Probekörper einer UF-gebundenen Span-Faserplatte aus „frischen“ Spänen bzw. Fasern.

Abb. 4.4.1: Probekörper einer Span-Faserplatte mit Deckschichten aus UF-gebundenen „Frischfasern“ und einer Mittelschicht aus UF-gebundenen „Frischspänen“.
4.4.1 Rohdichte

Wie Abb. 4.4.2 zu entnehmen ist, bestehen hinsichtlich der Rohdichte der im Labor hergestellten Span-Faserplatten nur geringe Unterschiede zu den zuvor hergestellten Laborspanplatten. Die UF-gebundenen Spanfaserplatten aus Recyclingmaterial weisen mit 630kg/m³ die geringste Rohdichte auf, die in Verbindung mit einer relativ großen Streuung der Werte im Einzelfall zu Rohdichten unter 600kg/m³ führen, was bei der Beurteilung der übrigen Eigenschaften dieser Plattenvariante berücksichtigt werden muss.

![Diagramm der Rohdichte der UF- und PMDI-gebundenen Span- und Span-Faserplatten](image)

Abb. 4.4.2: Rohdichte der UF- und PMDI-gebundenen Span- und Span-Faserplatten, hergestellt aus „frischen“ Spänen und Fasern bzw. aus UF-Recyclingmaterial, sowie des industriell gefertigten UF- und PMDI-gebundenen Ausgangsmaterials.

Von den hergestellten Span-Faserplatten wurden Rohdichteprofile erstellt. Hierfür wurden nur Probekörper der aus „frischen“ Spänen/ Fasern hergestellten Platten verwendet. Die Abb. 4.4.3 und Abb. 4.4.4 geben je ein Rohdichteprofil einer UF-gebundenen und einer mit PMDI verleimten Platte wieder, wobei die mittlere Rohdichte jeweils durch die gestrichelten Linien angegeben wird. Aus dem annähernd gleichen Verlauf beider Diagramme ist zu entnehmen, dass die Wahl des Bindemittels in diesem Fall offensichtlich keinen Einfluss auf die Entwicklung des Rohdichteprofils nimmt. Beide Rohdichteprofile zeigen hoch verdichtete Deckschichten von jeweils ca. 3mm Dicke mit einer maximalen Dichte jenseits der 1000kg/m³ und im mittleren Bereich eine
annähernd konstante Dichte von ca. 600kg/m³. Diese als vorteilhaft zu bezeichnende Rohdichteverteilung über den Plattenquerschnitt ist für die guten mechanischen Eigenschaften der hergestellten Span- Faserplatten verantwortlich.

Abb. 4.4.3: Rohdichteprofil und mittlere Rohdichte einer UF- gebundenen Span-Faserplatte, hergestellt aus „frischen“ Spänen und Fasern.

Abb. 4.4.4: Rohdichteprofil und mittlere Rohdichte einer PMDI- gebundenen Span-Faserplatte, hergestellt aus „frischen“ Spänen und Fasern.
4.4.2 Querzugfestigkeit

![Chart](image_url)

Abb. 4.4.5: Querzugfestigkeit der UF- und PMDI-gebundenen Span- und Span-Faserplatten, hergestellt aus „frischen“ Spänen und Fasern bzw. aus UF-Recyclingmaterial, sowie des industriell gefertigten UF- und PMDI-gebundenen Ausgangsmaterials.
4.4.3 Biegefestigkeit

Abb. 4.4.6: Biegefestigkeit der UF- und PMDI-gebundenen Span- und Span-Faserplatten, hergestellt aus „frischen“ Spänen und Fasern bzw. aus UF-Recyclingmaterial, sowie des industriell gefertigten UF- und PMDI-gebundenen Ausgangsmaterials.
4.4.4 Dickenquellung und Wasseraufnahme

Abb. 4.4.7: Dickenquellung nach 2h Wasserlagerung der UF- und PMDI-gebundenen Span- und Span-Faserplatten, hergestellt aus „frischen“ Spänen und Fasern bzw. aus UF-Recyclingmaterial, sowie des industriell gefertigten UF- und PMDI-gebundenen Ausgangsmaterials.
Abb. 4.4.8: Dickenquellung nach 24h Wasserlagerung der UF- und PMDI-gebundenen Span- und Span-Faserplatten, hergestellt aus „frischen“ Spänen und Fasern bzw. aus UF-Recyclingmaterial, sowie des industriell gefertigten UF- und PMDI-gebundenen Ausgangsmaterials.

Abb. 4.4.9: Wasseraufnahme nach 24h Wasserlagerung der UF- und PMDI-gebundenen Span- und Span-Faserplatten, hergestellt aus „frischen“ Spänen und Fasern bzw. aus UF-Recyclingmaterial, sowie des industriell gefertigten UF- und PMDI-gebundenen Ausgangsmaterials.
4.4.5 Dimensionsstabilität nach Lagerung bei unterschiedlicher relativer Luftfeuchte

Abb. 4.4.10: Maßänderung in Plattenebene (Längenänderung) nach Lagerung bei 65%, 35% und 85% relativer Luftfeuchte der UF- und PMDI-gebundenen Span- und Span-Faserplatten, hergestellt aus „frischen“ Spänen und Fasern bzw. aus UF-Recyclingmaterial, sowie des industriell gefertigten UF- und PMDI-gebundenen Ausgangsmaterials.
Ergebnisse und Diskussion

Abb. 4.4.11: Maßänderung senkrecht zur Plattenebene (Dickenänderung) nach Lagerung bei 65%, 35% und 85% relativer Luftfeuchte der UF- und PMDI-gebundenen Span- und Span-Faserplatten, hergestellt aus "frischen" Spänen und Fasern bzw. aus UF-Recyclingmaterial, sowie des industriell gefertigten UF- und PMDI-gebundenen Ausgangsmaterials.

Verglichen mit den entsprechenden Spanplatten aus Recyclingspänen ist die Längenänderung jedoch überaus deutlich reduziert. Die diesem Plattentyp zugrunde liegende Annahme, die sehr dimensionsstabilen Faser-Deckschichten könnten die weniger stabilen Span-Mittelschichten in ihrer Längenänderung begrenzen, wird durch die erzielten Ergebnisse vollauf bestätigt.

Auf die Dickenänderung durch Lagerung bei unterschiedlicher Luftfeuchte (Abb. 4.4.11) wirkt sich der besondere Aufbau der Span- Faserplatten erwartungsgemäß kaum aus. Die PMDI-Verleimung zeigt bei jedem Span- bzw. Fasermaterial eine geringere Dickenänderung, wobei der Unterschied bei den Platten aus Recyclingmaterial deutlicher zu Tage tritt.
4.4.6 Gleichgewichtsfeuchte

Die Untersuchungen zur Gleichgewichtsfeuchte der im Labor hergestellten Span-Faserplatten ergaben keine ausgeprägten Unterschiede zwischen den Platten aus „frischen“ Spänen und Fasern und denen aus Recyclingmaterial (Abb. 4.4.12).

Abb. 4.4.12: Gleichgewichtsfeuchte nach Lagerung bei 65% relativer Luftfeuchte und deren Veränderung durch Absenkung auf 35% und Anhebung auf 85% relative Luftfeuchte. Dargestellt sind die Gleichgewichtsfeuchten der UF- und PMDI-gebundenen Span- und Span-Faserplatten, hergestellt aus „frischen“ Spänen und Fasern bzw. aus UF-Recyclingmaterial, sowie des industriell gefertigten UF- und PMDI-gebundenen Ausgangsmaterials.
4.4.7 Formaldehydabgabe

![Diagramm]

Abb. 4.4.13: Nach der Flaschenmethode (3h Prüfdauer) bestimmte Formaldehydabgabe der UF- und PMDI-gebundenen Span- und Span-Faserplatten, hergestellt aus „frischen“ Spänen und Fasern bzw. aus UF-Recyclingmaterial, sowie des industriell gefertigten UF- und PMDI-gebundenen Ausgangsmaterials.
4.4.8 Untersuchungen zur Sperrwirkung der Faserdeckschichten

Um die Bedeutung der Faserdeckschichten für die Dimensionsstabilität der Span-Faserplatten zu untersuchen, wurden von einigen Probekörpern dieser Platten mittels einer Kreissäge die Faserdeckschichten entfernt, so dass nur die Spanmittelschichten übrig blieben. Diese Restkörper wurden den verschiedenen Klimatisierungszyklen ausgesetzt und ihre Dimensionsstabilität bestimmt. Die Abb. 4.4.13 und Abb. 4.4.14 geben die Ergebnisse dieser Untersuchungen wieder. Bei den Mittelschichtprobekörpern der Span-Faserplatten ist eine deutlich höhere Längenänderung zu verzeichnen als bei den entsprechenden Platten mit Faserdeckschicht. Dies ist ein Beleg für die aufgrund der bisherigen Beobachtungen angenommene ab sperrende Wirkung der dimensionsstabilen Faserdeckschichten auf die weniger stabilen Spanmittelschichten. Die Dickenänderung der Mittelschichtprobekörper ist erwartungsgemäß vergleichbar mit der der entsprechenden Span- Faserplatten.
Ergebnisse und Diskussion

Abb. 4.4.13: Maßänderung in Plattenebene (Längenänderung) nach Lagerung bei 65%, 35% und 85% relativer Luftfeuchte der UF- und PMDI-gebundenen Span- und Span-Faserplatten, hergestellt aus „frischen“ Spänen und Fasern, sowie der Spanmittelschichten (Faserdeckschichten zuvor entfernt) der UF- und PMDI-gebundenen Spanfaserplatten.

Abb. 4.4.14: Maßänderung senkrecht zur Plattenebene (Dickenänderung) nach Lagerung bei 65%, 35% und 85% relativer Luftfeuchte der UF- und PMDI-gebundenen Span- und Span-Faserplatten, hergestellt aus „frischen“ Spänen und Fasern, sowie der Spanmittelschichten (Faserdeckschichten zuvor entfernt) der UF- und PMDI-gebundenen Spanfaserplatten.
5 Betriebsversuche

5.1 Planung und Durchführung der Betriebsversuche

Weiterhin wurden die Holzfaser nicht wie im Labor getrennt von den Spänen beleimt und in Form einer zu 100% aus Fasern bestehenden Deckschicht auf die Spanmittelgeschicht gestreut, sondern das Fasermaterial wurde den Spänen kurz vor der Beleimung zugeführt, so dass Späne und Fasern zusammen die Beleimung durchliefen. Die Zudosierung des Fasermaterials erfolgte, indem zuvor abgewogene Mengen an Fasern den auf dem Weg zum Beleimungsmischer befindlichen Holzspänen in einer Förderschnecke kontinuierlich mit der Hand zugegeben wurden. Durch die von der Anlagensteuerung vorgegebene Spanmenge pro Zeiteinheit und der Zugabe einer definierten Menge an Fasern pro Zeiteinheit ergab sich ein konstanter Faseranteil des der Beleimung zugeführten Materials. Die Abb. 5.1.1 zeigt die Förderschnecke, in der die abgewogenen Holzfaser den Spänen zugegeben wurden. Beim ersten Teilversuch (Versuch I) mit TF-Harz wurde eine Faserzugabe von ca. 5% bis 10% bezogen auf die unbeleimten Späne gewählt. Beim Versuch II (PF-Harz) wurde die zugegebene Fasermenge auf 10% bis 15% erhöht.

Abb. 5.1.1: Zugabestelle der Holzfaser (Klappe in Bildmitte) in der Förderschnecke auf dem Weg zu den Beleimungsmischern. Im Hintergrund sind die Plastikwannen mit abgewogenen Fasermengen zu sehen.

Bei den für die Betriebsversuche verwendeten Holzfaser handelt es sich um einen zu Ballen gepressten industriell hergestellten thermomechanisch aufgeschlossenen Faserstoff aus Kiefernholz, der aus der MDF-Produktion entnommen wurde. Die für den

Nach der Beleimung des Span-Fasergemisches mit TF-Harz (Versuch I) bzw. PF-Harz (Versuch II) gelangt das beleimte Material in die Windstreuvorrichtung, welche mittels eines Luftstroms einen Span- bzw. Span-Faserkuchen mit einem dreischichtigem Aufbau (Deckschicht – Mittelschicht – Deckschicht) ausformt. Hier wurden die beleimten Fasern durch die Separierung im Luftstrom wieder von den Spänen getrennt und zum großen Teilen in die Deckschichten gestreut (Abb. 5.1.2). Die Zugabe von Holzfasern führte zu verstärkten Ablagerungen in der Windstreuvorrichtung, was zu einem zunehmend ungleichmäßigeren Streuergebnis führte.

Abb. 5.1.2: Span-Faserkuchen einer PF-gebundenen Span-Faserplatte direkt nach der Windstreuvorrichtung. Deutlich zu erkennen sind die Faseranteile in der oberen Deckschicht.

abgekühlt und darauf folgend in der Schleifstraße auf die Solldicke geschliffen. Von den im Rahmen der beiden Versuche hergestellten Span-Faserplatten, sowie von Spanplatten ohne Faseranteile, die unter ansonsten gleichen Bedingungen vor der Zugabe von Fasern produziert wurden, wurden Proben entnommen.

Im Rahmen des zweiten Versuchs wurde eine Probe des mit PF-Harz beleimten Span-Fasergemisches entnommen und nach einer Fraktionierung zu Deck- und Mittelschicht (MS > 1mm ≤ DS) im Labor zu 19mm dicken dreischichtigen Platten verpresst deren Rohdichte der der industriell gefertigten Platten entspricht. Ebenso wurde mit Proben der beleimten Späne ohne Faseranteile verfahren.

Sämtliche im Rahmen der Betriebsversuche entnommenen Proben sowie die im Labor hergestellten Platten aus industriell hergestellten und beleimten Spänen und Fasern wurden hinsichtlich ihrer physikalisch-technologischen Eigenschaften untersucht. Die hierbei erzielten Ergebnisse werden im Folgenden dargestellt.

5.2 Ergebnisse der Betriebsversuche

5.2.1 Rohdichte

Die Rohdichte der in den Betriebsversuchen hergestellten Platten, dargestellt in Abb. 5.2.1, ist im Falle der TF-gebundenen Platten des Versuchs I mit Werten deutlich unter 650kg/m³ niedriger als die der zuvor im Labor hergestellten Span- und Span-Faserplatten. Bedingt durch die Streuung der Rohdichte sind im Einzelfall vor allem bei der industriell gefertigten TF-gebundenen Span-Faserplatte Rohdichtewerte unter 600kg/m³ möglich, was bei der Beurteilung der Platteneigenschaften berücksichtigt werden muss.

Die PF-gebundenen Platten des Versuchs II weisen höhere Rohdichten zwischen 650kg/m³ und 670kg/m³ auf, die mit den Rohdichten der im Rahmen der Laboruntersuchungen hergestellten Platten vergleichbar sind.
Betriebsversuche

5.2.1 Rohdichte der industriell hergestellten TF- und PF-gebundenen Span- und Span-Faserplatten sowie der aus industriell beleimtem Material im Labor hergestellten PF-gebundenen Span- und Spanfaserplatten.

5.2.2 Querzug- und Biegefestigkeit

Die im Labor fertig gestellten Span-Faserplatten zeigen eine niedrigere Querzug- und Biegefestigkeit als die vergleichbaren Spanplatten ohne Faseranteile. Dies ist womöglich auf einen ungünstigeren Plattenaufbau der im Labor hergestellten Span-Faserplatten zurückzuführen. Die Fraktionierung mittels eines Siebes konzentriert die
Faseranteile offensichtlich nicht in dem Maße in den Deckschichten, wie es die Windstreuvorrichtung im industriellen Maßstab vermag.

Abb. 5.2.2: Querzugfestigkeit der industriell hergestellten TF- und PF-gebundenen Span- und Spanfaserplatten sowie der aus industriell beleimtem Material im Labor hergestellten PF-gebundenen Span- und Spanfaserplatten.

Abb. 5.2.3: Biegefestigkeit der industriell hergestellten TF- und PF-gebundenen Span- und Spanfaserplatten sowie der aus industriell beleimtem Material im Labor hergestellten PF-gebundenen Span- und Spanfaserplatten.
5.2.3 Dickenquellung

Betrachtet man die in den Abb. 5.2.4 und Abb. 5.2.5 dargestellten Untersuchungsergebnisse zur Dickenquellung nach 2h und 24h Wasserlagerung, so ergeben sich nach 24h Wasserlagerung bei keiner der drei Herstellungsvarianten erkennbare Unterschiede zwischen den Platten mit und ohne Anteilen von Holzfasern. Die zu erkennenden geringfügigen Unterschiede in der Dickenquellung der einzelnen Platten nach 2h Wasserlagerung lassen sich nicht eindeutig auf den Einfluss der Faseranteile zurückführen. Einen Einfluss auf die Dickenquellung hat jedoch das Bindemittel. So beträgt die Dickenquellung nach 24h Wasserlagerung der PF-gebundenen Platten aus dem Versuch II mit Werten um 15% in etwa die Hälfte der Quellung der TF-gebundenen Platten aus Versuch I, die Werte um 30% aufweisen.

![Diagramm der Dickenquellung nach 2h Wasserlagerung](image)

Abb. 5.2.4: Dickenquellung nach 2h Wasserlagerung der industriell hergestellten TF- und PF-gebundenen Span- und Span-Faserplatten sowie der aus industriell beleimtem Material im Labor hergestellten PF-gebundenen Span- und Spanfaserplatten.
5.2.4 Wasseraufnahme

Die in Abb. 5.2.6 und Abb. 5.2.7 wiedergegebenen Ergebnisse der Untersuchungen zur Wasseraufnahme nach Wasserlagerung von 2h und 24h Dauer, spiegeln das bei den Untersuchungen zur Dickenquellung nach Wasserlagerung gewonnene Bild wider. Auch hier treten die nach 2h Wasserlagerung noch zu erkennenden Unterschiede in der Wasseraufnahme der verschiedenen Platten nach 24h Wasserlagerung in den Hintergrund. Die PF-Harz gebundenen Platten zeigen, wie nach den Ergebnissen der Untersuchungen zur Dickenquellung zu erwarten war, eine geringere Wasseraufnahme als die TF-gebundenen Platten.
Abb. 5.2.6: Wasseraufnahme nach 2h Wasserlagerung der industriell hergestellten TF- und PF-gebundenen Span- und Span-Faserplatten sowie der aus industriell beleimtem Material im Labor hergestellten PF-gebundenen Span- und Spanfaserplatten.

Abb. 5.2.7: Wasseraufnahme nach 24h Wasserlagerung der industriell hergestellten TF- und PF-gebundenen Span- und Span-Faserplatten sowie der aus industriell beleimtem Material im Labor hergestellten PF-gebundenen Span- und Spanfaserplatten.
5.2.5 Dimensionsstabilität nach Lagerung bei unterschiedlicher relativer Luftfeuchte

Die Untersuchungen zur Dimensionsänderung in Plattenebene (Längenänderung) aufgrund von Änderungen der relativen Luftfeuchte der im Rahmen der Betriebsversuche hergestellten Span- und Span-Faserplatten (Abb. 5.2.8), zeigen für den Fall der Adsorption, also einer Erhöhung der Plattenfeuchte aufgrund einer Anhebung der relativen Luftfeuchte von 65% auf 85%, ein nahezu gleiches Verhalten aller untersuchten Plattenvarianten. Die Maßänderung in Plattenebene beträgt bei den untersuchten Platten zwischen 0,12% und 0,15%. Im Bereich der Desorption, der Erniedrigung der Plattenfeuchte bedingt durch eine Absenkung der relativen Luftfeuchte von 65% auf 35%, zeigt die industriell hergestellte PF-gebundene Platte (Versuch II) mit Faseranteilen in der Deckschicht mit 0,07% eine deutlich geringere Schrumpfung als die auf gleiche Weise hergestellte Platte ohne Fasern, die um 0,12% schrumpfen. Die aus den gleichen Spänen bzw. aus dem gleichen Span-Fasergemisch im Labor hergestellten Platten zeigen nicht dieses Verhalten. Auch die TF-gebundenen Platten des Versuchs I zeigen keine Unterschiede zwischen der Spanplatte und der Span-Faserplatte. Dies hängt womöglich damit zusammen, dass das Spanmaterial einen hohen Anteil an Recyclingspänen enthält, der bereits die Längenänderung herabsetzt.

Abb. 5.2.8: Maßänderung in Plattenebene (Längenänderung) nach Lagerung bei 65%, 35% und 85% relativer Luftfeuchte der industriell hergestellten TF- und PF-gebundenen Span- und Span-Faserplatten sowie der aus industriell beleimtem Material im Labor hergestellten PF-gebundenen Span- und Spanfaserplatten.
Die Maßänderung senkrecht zur Plattenebene (Dickenänderung) aufgrund von Änderungen der relativen Luftfeuchte (Abb. 5.2.9) zeigt für die Platten mit Faseranteilen in den Deckschichten des Versuchs I und für die im Labor fertig gestellten Platten mit Fasern in den Deckschichten des Versuchs II eine gegenüber den entsprechenden Spanplatten verminderte Zunahme der Plattendicke aufgrund der durch eine Erhöhung der relativen Luftfeuchte von 65% auf 85% hervorgerufenen Adsorption. Im Fall der durch Absenkung der relativen Luftfeuchte auf 35% bedingten Desorption zeigen diese Span-Faserplatten eine gegenüber den vergleichbaren Spanplatten höhere Schrumpfung. Die industriell gefertigten PF-gebundenen Spanfaserplatten des Versuchs II zeigen eine verminderte Dickenänderung sowohl bei der Adsorption als auch bei der Desorption. Ein solches Verhalten war auch bei den im Labor hergestellten Span-Faserplatten (vgl. Kap. 4.4.5) zu beobachten.

Abb. 5.2.9: Maßänderung senkrecht zur Plattenebene (Dickenänderung) nach Lagerung bei 65%, 35% und 85% relativer Luftfeuchte der industriell hergestellten TF- und PF-gebundenen Span- und Span-Faserplatten sowie der aus industriell beleimtem Material im Labor hergestellten PF-gebundenen Span- und Spanfaserplatten.
5.2.6 Gleichgewichtsfeuchte

Abb. 5.2.10: Gleichgewichtsfeuchte nach Lagerung bei 65% relativer Luftfeuchte und deren Veränderung durch Absenkung auf 35% und Anhebung auf 85% relative Luftfeuchte. Dargestellt sind die Gleichgewichtsfeuchten der industriell hergestellten TF- und PF-gebundenen Span- und Span-Faserplatten sowie der aus industriell beleimtem Material im Labor hergestellten PF-gebundenen Span- und Spanfaserplatten.
5.2.7 Formaldehydabgabe

![Diagramm zur Formaldehydabgabe](image)

Abb. 5.2.11: Nach der Flaschenmethode (3h Prüfdauer) bestimmte Formaldehydabgabe der industriell hergestellten TF- und PF-gebundenen Span- und Spanfaserplatten sowie der aus industriell beleimtem Material im Labor hergestellten PF-gebundenen Span- und Spanfaserplatten.
5.3 Zusammenfassung und Bewertung der Betriebsversuche

Bei der Durchführung der oben beschriebenen Betriebsversuche bei der Fa. Kuntz traten durch die Zugabe der Fasern zum Spanmaterial einige technische Probleme auf, welche die Menge an Fasern, die ohne den Herstellungsprozess zu beeinträchtigen, zugegeben werden konnte stark begrenzte (vgl. Kap. 5.1). Die zu realisierende Faserzugabe war daher wie oben beschrieben auf ca. 10% der eingesetzten Holzspanmenge begrenzt. Trotz dieser Einschränkung konnte bei den Untersuchungen zur Dimensionsstabilität bei Änderung der relativen Luftfeuchte (Kap. 5.2.5) ein positiver Einfluss der eingebrachten Holzfasern auf die Maßänderung in Plattenebene und senkrecht dazu festgestellt werden. Der Unterschied hinsichtlich der Dimensionstabilität fällt bei den im Betriebsversuch produzierten Platten aufgrund der gegenüber den im Labor hergestellten Platten geringeren Faserbeigaben wesentlich geringer aus. Grundsätzlich jedoch können die im Labor gewonnenen Erkenntnisse über die
stabilisierende Wirkung von Holzfasern in den Deckschichten von Holzspanplatten bei Änderung der Plattenfeuchte durch die Ergebnisse der durchgeführten Betriebsversuche bestätigt werden. Weiterhin kann festgehalten werden, dass die im Rahmen der Betriebsversuche hergestellten Platten eine vergleichsweise hohe Dimensionsstabilität aufweisen, was auf den hohen Anteil an Recyclingmaterial der verwendeten Späne zurückzuführen ist. Insofern wird die aufgrund der Laboruntersuchungen getroffene Feststellung, dass die Verwendung von Recyclingmaterial bei der Verleimung mit einem geeigneten Bindemittel zu Platten mit teilweise verbesserten Eigenschaften führt, durch die Ergebnisse durchgeführten Betriebsversuche bestätigt.
6 Zusammenfassung

Ziel des Forschungsvorhabens ist es, die Dimensionsstabilität, insbesondere die Längenänderung, von Holzspanplatten unter gezielter Nutzung von materialimmanenten Eigenschaften zu verbessern. Im Rahmen der zu diesem Forschungsvorhaben durchgeführten Untersuchungen konnten eine Reihe von interessanten praxisrelevanten Feststellungen getroffen werden, die im Folgenden zusammenfassend dargestellt sind.

Das Verleimungsverhalten von Recyclingspänen, hergestellt aus UF-gebundenen Spanplatten (UF-Recyclingspäne) ist gegenüber den verschiedenen Bindemitteln stark unterschiedlich. Als Bindemittel für die Herstellung von Spanplatten aus UF-Recyclingspänen sind polymere auf Basis von Diphenylmethandiisocyanaten (PMDI) besonders geeignet.

Die aus UF-Recyclingspänen hergestellten Spanplatten weisen im Allgemeinen eine verglichen mit Platten aus „frischen“ Spänen verminderte Gleichgewichtsfeuchte auf.

Die Maßänderung in Plattenebene (Längenänderung) von PMDI- und MUF-gebundenen Spanplatten aus UF-Recyclingspänen ist deutlich niedriger als die von Spanplatten, die aus UF-Recyclingspänen mit UF-Harz als Bindemittel hergestellt wurden.

Die ad- und desorptionsbedingte Längenänderung von Holzspanplatten lässt sich im Allgemeinen durch Einbringung von Holzfasern in die Deckschichten der Platten stark eindämmen. Die Faserdeckschichten haben anscheinend eine Sperrwirkung auf die
darunter liegenden Späne der Mittelschicht. Dreischichtigen Span-Faserplatten, mit PMDI als Bindemittel hergestellt aus UF-Recyclingspänen bzw. UF-Recyclingfasern, zeigen eine deutlich niedrigere Längenänderung als vergleichbare Platten mit UF-Verleimung. Dies bestätigt die Feststellung, wonach PMDI als Bindemittel für UF-Recyclingspäne und UF-Recyclingfasern besonders geeignet ist.

Insgesamt lässt sich feststellen, dass aus UF-Recyclingspänen, deren Gleichgewichtsfeuchte niedriger liegt als die von frischen Spänen, mit geeigneten Bindemittel Holzspanplatten hergestellt werden können deren Dimensionsstabilität bei Änderung der relativen Luftfeuchte höher ist als die von Spanplatten, die aus „frischen“ Spänen hergestellt wurden. Auch die Einbringung von Holzfasern in die Deckschichten der Spanplatten hat eine deutliche Erhöhung der Dimensionsstabilität, insbesondere eine Verringerung der Längenänderung, zur Folge. Die durchgeführten Industriever suche haben die im Labor erarbeiteten Ergebnisse grundsätzlich bestätigt.

Die im Rahmen dieses Forschungsvorhabens durchgeführten Untersuchungen haben Möglichkeiten und Wege aufgezeigt, wie die Gebrauchseigenschaften von Holzspanplatten, insbesondere die Dimensionsstabilität bei Änderung der relativen Luftfeuchte, verbessert werden können und welche Bedeutung hierbei dem Bindemittel in Abhängigkeit vom verwendeten Spanmaterial zukommt.
7 Literatur

BÖHNER, G. UND ROFFAEL, E., 1987:
Sorptionsverhalten von UF-Spanplatten vor und nach einer Trocknung bei 103°C.
Holz als Roh- und Werkstoff, 45: 438

BURMESTER, A., 1971A:
Zur Vergütung von Holz mit Formaldehyd – Erste Mitteilung: Einfluß verschiedener Parameter auf den Vergüttungsgrad
Holz als Roh- und Werkstoff, 29: 51-56

BURMESTER, A., 1971B:
Zur Vergütung von Holz mit Formaldehyd – Zweite Mitteilung: Kombinierte Behandlung mit Tannin und Formaldehyd
Holz als Roh- und Werkstoff, 29: 97-102

BURMESTER, A., 1971C:
Zur Vergütung von Holz mit Formaldehyd – Dritte Mitteilung: Behandlung von reaktiviertem Kernholz
Holz als Roh- und Werkstoff, 29: 184-188

BURMESTER, A., 1975:
Zur Dimensionsstabilisierung von Holz
Holz als Roh- und Werkstoff, 33: 333-335

CHRISTENSEN, G. UND KELSEY, K., 1959:
Die Geschwindigkeit der Wasserdampfsorption durch Holz
Holz als Roh- und Werkstoff, 17: 178-188

DOSOUDIL, A., 1958:
Untersuchungen über den Einfluß von verschiedenen Versuchsbedingungen auf die Wasseraufnahme und Dickenquellung von Holzfaser-Isolierplatten.
Holz als Roh- und Werkstoff, 16: 297-306

DOSOUDIL, A., 1960:
Weitere Untersuchungen über die Wasseraufnahme von Holzfaserplatten, insbesondere Hartplatten.
Holz als Roh- und Werkstoff, 18: 106-111

ERNST, K., 1967:
Möglichkeiten zur Verminderung der Quellung bei Spanplatten.
Holztechnologie, 8: 41-43
FRANKE, R. UND ROFFAEL, E., 1998A:
Zum Recycling von Span- und MDF-Platten. Teil 1: Über die Hydrolyseresistenz
von ausgehärteten Harnstoff-Formaldehydharzen (UF-Harzen) in Span- und
mitteldichten Faserplatten (MDF).
Holz als Roh- und Werkstoff, 56: 79-82

FRANKE, R. UND ROFFAEL, E., 1998B:
Zum Recycling von Span- und MDF-Platten. Teil 2: Einfluß der thermischen
Behandlung von zerkleinerten UF-gebundenen Span- und MDF-Platten sowie
Kiefernspänen auf die Formaldehyd- und Ammoniakabgabe.
Holz als Roh- und Werkstoff, 56: 381-385

JAYME, G. UND BÜTTEL, H., 1966:
Über die Bestimmung und Bedeutung des Wasserrückhaltevermögens (des
WRV-Wertes) verschiedener gebleichter und ungebleichter Zellstoffe.
Das Papier, 20: 357-365

KEHR, E.; RIEHL, G.; HOFERICHTER, E.; ROFFAEL, E. UND B. DIX, 1994:
Feuchtebeständigkeit und Hydrolyseresistenz von Holz-zu-Holz-Bindungen in
Spanplatten, hergestellt mit formaldehydarmen modifizierten Harnstoff-
Formaldehydharzen unter Einsatz verschiedener Härungsbeschleuniger-
systeme. Teil 3: Eigenschaften von mit modifizierten Harnstoff-
Formaldehydharzen (UF-Harzen) hergestellten Spanplatten.
Holz als Roh- und Werkstoff, 52: 253-260

KLAUDITZ, W., BERLING, K. UND JACOBSEN, H., 1959:
Über die Herstellung und papiertechnologischen Eigenschaften von
Holzfaserstoffen aus Laubholz.
Das Papier, 13: 287-292

KOLLMAN, F. UND SCHNEIDER, A., 1958:
Einrichtungen zur praxisnahen und wissenschaftlich exakten Messung von
Sorptionseigenschaften von Holz und Holzwerkstoffen.
Holz als Roh- und Werkstoff, 16: 117-122

KOSSATZ, G., 1979:
Verfahren zum Herstellen von Gipsbauteilen, insbesondere Gipsplatten.
DE-AS 2919311 (vgl. EP 0019207 vom 07.05.1980)

KOSSATZ, G., DREWES, H., KRATZ, W., MEHLHORN, L., 1992:
Sorptionsverhalten von Holzwerkstoffen in verschiedenen Umgebungsklimaten.
In: Ehlbeck, J. und Steck, G. (Hrsg.): Ingenieurholzbau in Forschung und
Praxis. Karlsruhe, Bruderverlag: 75-82

LEHMANN, W. F., 1972:
Forest Products Journal, 22, (7): 53-59
LEMPFER, K., 1987:
Untersuchungen zur Herstellung gipsgebundener Spanplatten in einem Halbtrocken-Verfahren.
AiF-Abschlußbericht (AiF-Projekt Nr. 5451)

MICHANICKL, A. UND BOEHME, C., 1995:
Verfahren zur Wiedergewinnung von Spänen und Fasern aus Holzwerkstoffreststücken, Altmöbeln, Produktionsrückständen, Abfällen und anderen holzwerkstoffhaltigen Materialien.
DE-OS 195 09 152 A 1

MÖLLER, A., 1994:
Plattenförmiger oder geformter Holzwerkstoff.
Weltorganisation für geistiges Eigentum, internationales Aktenzeichen: PCT/DE93/00558

NAVI, P. UND GIRADET, F., 2000:

NIEMZ, P. UND KUCERA, L. J., 1999:
Gleichgewichtsfeuchte bei Holzwerkstoffen
Holzzentralblatt, 125: 100

NIEMZ, P. UND POBLETE, H., 1995:
Untersuchungen zur Gleichgewichtsfeuchte von MDF und Spanplatten
Holz als Roh- und Werkstoff, 53: 368

NOACK, D., 1969:
Dimensionstabilisierung von Holz mit Polyäthylenglykol
Holzzentralblatt 95: 997-998, 1000

NOACK, D. UND SCHWAB, E., 1977:
Holz als Roh- und Werkstoff, 35: 421-429

ONISKO, W. UND PAWLIKCI, J., 1985:
Untersuchungen über die hydrophobierende Wirkung von Formaldehyd auf Kiefern-Defibratorstoff
Holzforschung und Holzverwertung 37: 4-6
PAULITSCH, M., 1975:
Untersuchungen über die Dimensionsänderungen von Spanplatten in
Holz als Roh- und Werkstoff, 33: 142-146

Pawllicki, J., 1985:
Untersuchungen zum Einfluß von Formaldehyd auf die physikalischen
Eigenschaften von Holzfaserplatten
Holzforschung und Holzverwertung 37: 112-114

PFLEIDERER, 1995:
Verfahren zum Recycling von Holzwerkstoffen. EP 0581039

PÖPPER, R. U. BARIKA, M., 1972:
Die Acylierung des Holzes – Erste Mitteilung: Wasserdampf-
Sorptionseigenschaften
Holz als Roh- und Werkstoff, 30: 289-294

PÖPPER, R. U. BARIKA, M., 1973:
Die Acylierung des Holzes – Zweite Mitteilung: Thermodynamik der
Wasserdampf-Sorption
Holz als Roh- und Werkstoff, 31: 65-70

PÖPPER, R. U. BARIKA, M., 1975:
Die Acylierung des Holzes – Dritte Mitteilung: Quellungs- und
Schwindungseigenschaften
Holz als Roh- und Werkstoff, 33: 415-419

RANITA, L., 1978:
Untersuchungen über die Dimensionsänderungen von Spanplatten in
Plattenebene. 4. Mitteilung: Orientierende Versuche zur Verminderung der
linearen Flächenänderung durch verfahrenstechnische Optimierung.
Holz als Roh- und Werkstoff, 36: 37-44

ROFFAEL, E. U. SCHNEIDER, A., 1978:
Zum Sorptionsverhalten von Holzspanplatten. Teil 1: Einfluß des
Bindemitteltyps und des Bindemittelaufwands auf die
Gleichgewichtsfeuchtigkeit.
Holz als Roh- und Werkstoff, 36: 393-396

ROFFAEL, E. U. SCHNEIDER, A., 1979:
Zum Sorptionsverhalten von Holzspanplatten. Teil 2: Einfluß der Holzart auf die
Gleichgewichtsfeuchtigkeit.
Holz als Roh- und Werkstoff 37: 259-264

WANGAARD, F. UND GRANDOS, L., 1967:
The effect of extractives on water sorption by wood
Wood science und technology, 1, (4): 253-277

WATKINSON, P. J. UND GOSLIGA, N. L. VAN, 1990:
Effect of humidity on physical and mechanical properties of New Zealand wood composites
Forest Products Journal, 40, (7/8): 15-20
8 Anhang

<table>
<thead>
<tr>
<th>Anhang</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Material</th>
<th>Fraktion > 4mm [%]</th>
<th>Fraktion > 2mm [%]</th>
<th>Fraktion > 1mm [%]</th>
<th>Fraktion > 0,5mm [%]</th>
<th>Fraktion > 0,2mm [%]</th>
<th>Fraktion ≤ 0,2mm [%]</th>
<th>Mittelschicht (4mm > MS < 1mm) [%]</th>
<th>Deckschicht (1mm > DS < 0,2mm) [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>UF-Spanplatte nicht wärmebehandelt, Stöcke ca. 5cm x 5cm, 130°C/1h, Flotte 4:1, kein NaOH</td>
<td>45,7</td>
<td>10,6</td>
<td>9,4</td>
<td>13,9</td>
<td>15,8</td>
<td>4,5</td>
<td>20,0</td>
<td>29,7</td>
</tr>
<tr>
<td>UF-Spanplatte nicht wärmebehandelt, mech. zerkl. Material >4mm, 130°C/1h, Flotte 4:1, kein NaOH</td>
<td>23,5</td>
<td>28,7</td>
<td>8,4</td>
<td>14,2</td>
<td>20,4</td>
<td>4,8</td>
<td>37,1</td>
<td>34,6</td>
</tr>
<tr>
<td>UF-Spanplatte nicht wärmebehandelt, mech. zerkl. Material >4mm, 130°C/1h, Flotte 4:1, 1% NaOH auf atro Platte</td>
<td>33,0</td>
<td>26,5</td>
<td>3,8</td>
<td>11,7</td>
<td>19,3</td>
<td>5,7</td>
<td>30,4</td>
<td>31,0</td>
</tr>
<tr>
<td>UF-Spanplatte nicht wärmebehandelt, mech. zerkl. Material >4mm, 190°C/1h, Flotte 4:1, 1% NaOH auf atro Platte</td>
<td>12,6</td>
<td>27,1</td>
<td>15,5</td>
<td>16,8</td>
<td>21,2</td>
<td>6,8</td>
<td>42,6</td>
<td>38,0</td>
</tr>
<tr>
<td>UF-Spanplatte nicht wärmebehandelt, mechanisch zerkleint</td>
<td>3,9</td>
<td>20,5</td>
<td>32,6</td>
<td>30,5</td>
<td>7,4</td>
<td>5,3</td>
<td>53,1</td>
<td>37,9</td>
</tr>
<tr>
<td>MUF-Spanplatte nicht wärmebehandelt, mechanisch zerkleint</td>
<td>9,6</td>
<td>42,2</td>
<td>30,0</td>
<td>14,3</td>
<td>3,0</td>
<td>0,9</td>
<td>72,2</td>
<td>17,3</td>
</tr>
<tr>
<td>PMDI-Spanplatte nicht wärmebehandelt, mechanisch zerkleint</td>
<td>5,2</td>
<td>31,6</td>
<td>33,5</td>
<td>21,6</td>
<td>7,0</td>
<td>1,1</td>
<td>65,1</td>
<td>28,6</td>
</tr>
<tr>
<td>industriell hergestellte Mittelschichtspäne</td>
<td>8,9</td>
<td>24,0</td>
<td>43,3</td>
<td>19,2</td>
<td>4,4</td>
<td>0,2</td>
<td>67,3</td>
<td>23,6</td>
</tr>
<tr>
<td>industriell hergestellte Deckachsichtspäne</td>
<td>0,0</td>
<td>0,2</td>
<td>18,4</td>
<td>40,3</td>
<td>29,3</td>
<td>11,8</td>
<td>18,6</td>
<td>69,6</td>
</tr>
</tbody>
</table>

Tab. 8.1: Siebanalysen der im Forschungsvorhaben hergestellten Recyclingspäne und der verwendeten industriell gefertigten „frischen“ Späne. Dargestellt sind die prozentualen Massenanteile der einzelnen Fraktionen und die resultierenden Anteile an Deck- und Mittelschichtspänen.
<table>
<thead>
<tr>
<th>Ausgangsmaterial</th>
<th>Art des Aufschlusses</th>
<th>Aufschlussbedingungen</th>
<th>4 mm > MS < 1 mm</th>
<th>MS</th>
<th>DS</th>
<th>pH-Wert</th>
<th>aktivierte Pufferkapazität [mMol NaOH/100g atro Späne]</th>
<th>Stickstoffgehalt [% atro Späne]</th>
<th>Formaldehydabgabe [mg/ kg atro Späne]</th>
<th>UF-gebundene MDF</th>
</tr>
</thead>
<tbody>
<tr>
<td>UF-gebundenen Spanplatte</td>
<td>thermohydrolytisch, 130°C/ 1h, Flotte 4:1, 1% NaOH auf atro Platte</td>
<td>MS</td>
<td>6,6</td>
<td>0,31</td>
<td>1,4</td>
<td>9,8</td>
<td>84</td>
<td>72,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DS</td>
<td>6,7</td>
<td>0,30</td>
<td>1,1</td>
<td>5,3</td>
<td>50</td>
<td>71,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UF-gebundenen Spanplatte</td>
<td>thermohydrolytisch, 190°C/ 1h, Flotte 4:1, 1% NaOH auf atro Platte</td>
<td>MS</td>
<td>5,5</td>
<td>2,45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DS</td>
<td>5,6</td>
<td>2,03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UF-gebundenen Spanplatte</td>
<td>mechanische Zerkleinerung</td>
<td>MS</td>
<td>5,1</td>
<td>1,49</td>
<td>2,2</td>
<td>14,3</td>
<td>130</td>
<td>57,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DS</td>
<td>5,1</td>
<td>1,63</td>
<td>2,6</td>
<td>15,4</td>
<td>145</td>
<td>55,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UF-gebundenen Spanplatte</td>
<td>mechanische Zerkleinerung</td>
<td>MS</td>
<td>5,0</td>
<td>1,47</td>
<td>2,1</td>
<td>12,7</td>
<td>122</td>
<td>56,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DS</td>
<td>5,1</td>
<td>1,52</td>
<td>2,7</td>
<td>14,7</td>
<td>145</td>
<td>53,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MUF-gebundenen Spanplatte</td>
<td>mechanische Zerkleinerung</td>
<td>MS</td>
<td>5,1</td>
<td>1,09</td>
<td>4,0</td>
<td>40,9</td>
<td>278</td>
<td>43,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DS</td>
<td>5,0</td>
<td>1,08</td>
<td>5,8</td>
<td>53,3</td>
<td>373</td>
<td>49,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MUF-gebundene Spanplatte</td>
<td>mechanische Zerkleinerung</td>
<td>MS</td>
<td>5,0</td>
<td>1,09</td>
<td>4,3</td>
<td>39,1</td>
<td>270</td>
<td>36,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DS</td>
<td>5,0</td>
<td>1,27</td>
<td>5,8</td>
<td>44,9</td>
<td>333</td>
<td>41,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMDI-gebundenen Spanplatte</td>
<td>mechanische Zerkleinerung</td>
<td>MS</td>
<td>5,5</td>
<td>1,29</td>
<td>0,6</td>
<td>1,1</td>
<td>11</td>
<td>53,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DS</td>
<td>5,4</td>
<td>1,82</td>
<td>0,7</td>
<td>2,2</td>
<td>13</td>
<td>53,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMDI-gebundene Spanplatte</td>
<td>mechanische Zerkleinerung</td>
<td>MS</td>
<td>5,2</td>
<td>1,80</td>
<td>0,6</td>
<td>1,2</td>
<td>10</td>
<td>47,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DS</td>
<td>5,2</td>
<td>2,15</td>
<td>0,8</td>
<td>2,0</td>
<td>11</td>
<td>47,7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>industriell hergestellte Späne</td>
<td></td>
<td>MS</td>
<td>4,7</td>
<td>1,23</td>
<td>0,2</td>
<td>2,9</td>
<td>33</td>
<td>68,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DS</td>
<td>4,9</td>
<td>1,22</td>
<td>1,7</td>
<td>8,4</td>
<td>104</td>
<td>57,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UF-gebundene MDF</td>
<td>thermohydrolytisch, 130°C/ 1h, Flotte 6:1, 1% NaOH auf atro Platte</td>
<td>MS</td>
<td>6,6</td>
<td>0,27</td>
<td>4,6</td>
<td></td>
<td>200</td>
<td>78,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>industriell hergestellte Fasern</td>
<td></td>
<td>3,9</td>
<td>3,27</td>
<td>0,1</td>
<td>20</td>
<td>89,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tab. 8.2: Verleimungsrelevante Eigenschaften der im Forschungsvorhaben hergestellten Recyclingspäne und Recyclingfasern und der verwendeten industriell gefertigten „frischen“ Späne und Fasern
<table>
<thead>
<tr>
<th>Industriell gefertigtes Ausgangsmaterial</th>
<th>Plattdicke [mm]</th>
<th>Rohdichte [g/ cm³]</th>
<th>Querzugfestigkeit [N/ mm²]</th>
<th>Biegefestigkeit [N/ mm²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>UF-gebundene Spanplatte</td>
<td>16,3</td>
<td>0,706</td>
<td>0,67</td>
<td>14,2</td>
</tr>
<tr>
<td>MUF-gebundene Spanplatte</td>
<td>21,3</td>
<td>0,747</td>
<td>0,92</td>
<td>24,6</td>
</tr>
<tr>
<td>PMDI-gebundene Spanplatte</td>
<td>16,4</td>
<td>0,728</td>
<td>0,89</td>
<td>14,5</td>
</tr>
<tr>
<td>UF-gebundene Spanplatte wärmebehandelt (70°C/48h)</td>
<td>16,2</td>
<td>0,710</td>
<td>0,74</td>
<td>15,4</td>
</tr>
<tr>
<td>MUF-gebundene Spanplatte wärmebehandelt (70°C/48h)</td>
<td>21,2</td>
<td>0,789</td>
<td>1,05</td>
<td>27,1</td>
</tr>
<tr>
<td>PMDI-gebundene Spanplatte wärmebehandelt (70°C/48h)</td>
<td>16,4</td>
<td>0,747</td>
<td>0,97</td>
<td>16,4</td>
</tr>
<tr>
<td>UF-Recyclingspäne, UF-beleimt</td>
<td>19,0</td>
<td>0,649</td>
<td>0,16</td>
<td>2,8</td>
</tr>
<tr>
<td>UF-Recyclingspäne, MUF-beleimt</td>
<td>19,2</td>
<td>0,675</td>
<td>0,55</td>
<td>6,5</td>
</tr>
<tr>
<td>UF-Recyclingspäne, PMDI-beleimt</td>
<td>19,5</td>
<td>0,676</td>
<td>0,60</td>
<td>6,9</td>
</tr>
<tr>
<td>UF-Recyclingspäne wärmebehandelt (70°C/48h), UF-beleimt</td>
<td>19,5</td>
<td>0,676</td>
<td>0,20</td>
<td>2,8</td>
</tr>
<tr>
<td>UF-Recyclingspäne wärmebehandelt (70°C/48h), MUF-beleimt</td>
<td>19,1</td>
<td>0,682</td>
<td>0,50</td>
<td>6,0</td>
</tr>
<tr>
<td>UF-Recyclingspäne wärmebehandelt (70°C/48h), PMDI-beleimt</td>
<td>19,1</td>
<td>0,701</td>
<td>0,73</td>
<td>6,7</td>
</tr>
<tr>
<td>frische Späne, UF-beleimt</td>
<td>19,5</td>
<td>0,678</td>
<td>0,46</td>
<td>7,9</td>
</tr>
<tr>
<td>frische Späne, MUF-beleimt</td>
<td>19,2</td>
<td>0,664</td>
<td>1,01</td>
<td>16,4</td>
</tr>
<tr>
<td>frische Späne, PMDI-beleimt</td>
<td>20,0</td>
<td>0,673</td>
<td>0,76</td>
<td>12,2</td>
</tr>
<tr>
<td>PMDI-Recyclingspäne, PMDI-beleimt</td>
<td>19,1</td>
<td>0,700</td>
<td>0,41</td>
<td>7,3</td>
</tr>
<tr>
<td>Span-Faserplatte frische Späne/Fasern, UF-beleimt</td>
<td>18,5</td>
<td>0,665</td>
<td>0,77</td>
<td>22,2</td>
</tr>
<tr>
<td>Span-Faserplatte frische Späne/Fasern, PMDI-beleimt</td>
<td>18,7</td>
<td>0,641</td>
<td>0,68</td>
<td>32,9</td>
</tr>
<tr>
<td>Span-Faserplatte UF-Recyclingspäne/fasern, PMDI-beleimt</td>
<td>19,0</td>
<td>0,630</td>
<td>0,34</td>
<td>10,7</td>
</tr>
<tr>
<td>Span-Faserplatte UF-Recyclingspäne/fasern, PMDI-beleimt</td>
<td>18,9</td>
<td>0,671</td>
<td>0,56</td>
<td>20,1</td>
</tr>
<tr>
<td>TF-gebundene Spanplatte</td>
<td>16,5</td>
<td>0,630</td>
<td>0,27</td>
<td>9,7</td>
</tr>
<tr>
<td>TF-gebundene Span-Faserplatte</td>
<td>16,3</td>
<td>0,613</td>
<td>0,26</td>
<td>9,6</td>
</tr>
<tr>
<td>PF-gebundene Spanplatte</td>
<td>19,4</td>
<td>0,665</td>
<td>0,65</td>
<td>20,8</td>
</tr>
<tr>
<td>PF-gebundene Span-Faserplatte</td>
<td>19,2</td>
<td>0,657</td>
<td>0,64</td>
<td>21,0</td>
</tr>
<tr>
<td>PF-gebundene Spanplatte im Labor gepresst</td>
<td>19,2</td>
<td>0,646</td>
<td>0,70</td>
<td>18,1</td>
</tr>
<tr>
<td>PF-gebundene Span-Faserplatte im Labor gepresst</td>
<td>19,4</td>
<td>0,662</td>
<td>0,66</td>
<td>15,5</td>
</tr>
</tbody>
</table>

Tab. 8.3: Plattdicke, Rohdichte, Querzug- und Biegefestigkeit der im Forschungsvorhaben im Labor hergestellten Span- und Span-Faserplatten, sowie der bei den Betriebsversuchen gezogenen Plattenproben
<table>
<thead>
<tr>
<th>Material</th>
<th>Dickenquellung [%]</th>
<th>Wasseraufnahme [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2h MW</td>
<td>2h STA</td>
</tr>
<tr>
<td>UF-gebundene Spanplatte</td>
<td>6,1</td>
<td>0,2</td>
</tr>
<tr>
<td>MUF-gebundene Spanplatte</td>
<td>1,0</td>
<td>0,2</td>
</tr>
<tr>
<td>PMDI-gebundene Spanplatte</td>
<td>2,3</td>
<td>0,6</td>
</tr>
<tr>
<td>UF-gebundene Spanplatte wärmebehandelt (70°C/48h)</td>
<td>6,0</td>
<td>0,2</td>
</tr>
<tr>
<td>MUF-gebundene Spanplatte wärmebehandelt (70°C/48h)</td>
<td>1,1</td>
<td>0,3</td>
</tr>
<tr>
<td>PMDI-gebundene Spanplatte wärmebehandelt (70°C/48h)</td>
<td>2,4</td>
<td>0,7</td>
</tr>
<tr>
<td>UF-Recyclingspäne, UF-beleimt</td>
<td>4,5</td>
<td>0,3</td>
</tr>
<tr>
<td>UF-Recyclingspäne, MUF-beleimt</td>
<td>1,4</td>
<td>0,1</td>
</tr>
<tr>
<td>UF-Recyclingspäne, PMDI-beleimt</td>
<td>1,3</td>
<td>0,1</td>
</tr>
<tr>
<td>UF-Recyclingspäne wärmebehandelt (70°C/48h), UF-beleimt</td>
<td>4,4</td>
<td>0,4</td>
</tr>
<tr>
<td>UF-Recyclingspäne wärmebehandelt (70°C/48h), MUF-beleimt</td>
<td>1,7</td>
<td>0,4</td>
</tr>
<tr>
<td>UF-Recyclingspäne wärmebehandelt (70°C/48h), PMDI-beleimt</td>
<td>1,1</td>
<td>0,1</td>
</tr>
<tr>
<td>frische Späne, UF-beleimt</td>
<td>5,6</td>
<td>0,9</td>
</tr>
<tr>
<td>frische Späne, MUF-beleimt</td>
<td>1,3</td>
<td>0,1</td>
</tr>
<tr>
<td>frische Späne, PMDI-beleimt</td>
<td>1,2</td>
<td>0,1</td>
</tr>
<tr>
<td>PMDI-Recyclingspäne, PMDI-beleimt</td>
<td>2,0</td>
<td>0,1</td>
</tr>
</tbody>
</table>

Tab. 8.4: Dickenquellung und Wasseraufnahme nach 2h und 24h Wasserlagerung der im Forschungsvorhaben im Labor hergestellten Span- und Span-Faserplatten, sowie der bei den Betriebsversuchen gezogenen Plattenproben
Tabelle 8.5: Maßänderung in Plattenebene (Längenänderung) und senkrecht dazu (Dickenänderung) nach Lagerung bei 65%, 35% und 85% relativer Luftfeuchte der im Forschungsvorhaben im Labor hergestellten Span- und Span-Faserplatten, sowie der bei den Betriebsversuchen gezogenen Plattenproben

<table>
<thead>
<tr>
<th>Industrieliefertechnisches Ausgangsmaterial</th>
<th>Desorption</th>
<th>Adsorption</th>
<th>Desorption</th>
<th>Adsorption</th>
</tr>
</thead>
<tbody>
<tr>
<td>UF-gebundene Spanplatte</td>
<td>0,16</td>
<td>0,03</td>
<td>-1,46</td>
<td>0,14</td>
</tr>
<tr>
<td>MUF-gebundene Spanplatte</td>
<td>0,12</td>
<td>0,02</td>
<td>-1,01</td>
<td>0,04</td>
</tr>
<tr>
<td>PMDI-gebundene Spanplatte</td>
<td>0,15</td>
<td>0,02</td>
<td>-1,54</td>
<td>0,14</td>
</tr>
<tr>
<td>UF-gebundene Spanplatte wärmebehandelt (70°C/48h)</td>
<td>0,14</td>
<td>0,02</td>
<td>-1,28</td>
<td>0,08</td>
</tr>
<tr>
<td>MUF-gebundene Spanplatte wärmebehandelt (70°C/48h)</td>
<td>0,13</td>
<td>0,03</td>
<td>-1,02</td>
<td>0,17</td>
</tr>
<tr>
<td>PMDI-gebundene Spanplatte wärmebehandelt (70°C/48h)</td>
<td>0,14</td>
<td>0,04</td>
<td>-1,62</td>
<td>0,09</td>
</tr>
<tr>
<td>UF-Recyclingspäne, UF-beleimt</td>
<td>0,19</td>
<td>0,01</td>
<td>-1,14</td>
<td>0,05</td>
</tr>
<tr>
<td>UF-Recyclingspäne, MUF-beleimt</td>
<td>0,19</td>
<td>0,01</td>
<td>-1,03</td>
<td>0,05</td>
</tr>
<tr>
<td>UF-Recyclingspäne, PMDI-beleimt</td>
<td>0,19</td>
<td>0,01</td>
<td>-1,11</td>
<td>0,03</td>
</tr>
<tr>
<td>UF-Recyclingspäne wärmebehandelt (70°C/48h), UF-beleimt</td>
<td>0,20</td>
<td>0,01</td>
<td>-1,00</td>
<td>0,08</td>
</tr>
<tr>
<td>UF-Recyclingspäne wärmebehandelt (70°C/48h), MUF-beleimt</td>
<td>0,17</td>
<td>0,01</td>
<td>-0,79</td>
<td>0,04</td>
</tr>
<tr>
<td>UF-Recyclingspäne wärmebehandelt (70°C/48h), PMDI-beleimt</td>
<td>0,25</td>
<td>0,03</td>
<td>-1,52</td>
<td>0,07</td>
</tr>
<tr>
<td>frische Späne, UF-beleimt</td>
<td>0,06</td>
<td>0,02</td>
<td>-1,61</td>
<td>0,26</td>
</tr>
<tr>
<td>frische Späne, MUF-beleimt</td>
<td>0,13</td>
<td>0,02</td>
<td>-1,11</td>
<td>0,02</td>
</tr>
<tr>
<td>frische Späne, PMDI-beleimt</td>
<td>0,16</td>
<td>0,02</td>
<td>-1,26</td>
<td>0,12</td>
</tr>
<tr>
<td>PMDI-Recyclingspäne, PMDI-beleimt</td>
<td>0,09</td>
<td>0,02</td>
<td>-0,55</td>
<td>0,11</td>
</tr>
<tr>
<td>Span-Faserplatte frische Späne/ Fasern, UF-beleimt</td>
<td>-0,07</td>
<td>0,02</td>
<td>-0,77</td>
<td>0,12</td>
</tr>
<tr>
<td>Span-Faserplatte frische Späne/ Fasern, PMDI-beleimt</td>
<td>-0,09</td>
<td>0,02</td>
<td>-0,68</td>
<td>0,05</td>
</tr>
<tr>
<td>Span-Faserplatte UF-Recyclingspäne/ -fasern, UF-beleimt</td>
<td>-0,09</td>
<td>0,02</td>
<td>-0,90</td>
<td>0,23</td>
</tr>
<tr>
<td>PMDI-Recyclingspäne, PMDI-beleimt</td>
<td>-0,09</td>
<td>0,02</td>
<td>-0,76</td>
<td>0,09</td>
</tr>
<tr>
<td>TF-gebundene Spanplatte</td>
<td>-0,09</td>
<td>0,01</td>
<td>-0,63</td>
<td>0,08</td>
</tr>
<tr>
<td>TF-gebundene Span-Faserplatte</td>
<td>-0,09</td>
<td>0,01</td>
<td>-0,77</td>
<td>0,09</td>
</tr>
<tr>
<td>PF-gebundene Spanplatte</td>
<td>-0,12</td>
<td>0,01</td>
<td>-0,98</td>
<td>0,09</td>
</tr>
<tr>
<td>PF-gebundene Span-Faserplatte</td>
<td>-0,07</td>
<td>0,03</td>
<td>-0,62</td>
<td>0,08</td>
</tr>
<tr>
<td>PF-gebundene Spanplatte im Labor gepresst</td>
<td>-0,11</td>
<td>0,01</td>
<td>-0,70</td>
<td>0,06</td>
</tr>
<tr>
<td>PF-gebundene Span-Faserplatte im Labor gepresst</td>
<td>-0,11</td>
<td>0,01</td>
<td>-0,79</td>
<td>0,06</td>
</tr>
</tbody>
</table>

MW: Mittelwert, STA: Standardabweichung
Tab. 8.6: Gleichgewichtsfeuchte nach Lagerung bei 65%, 35% und 85% relativer Luftfeuchte und Formaldehydabgabe (Flaschenmethode) der im Forschungsvorhaben im Labor hergestellten Span- und Span-Faserplatten, sowie der bei den Betriebsversuchen gezogenen Plattenproben